File size: 9,056 Bytes
c347ccd 47f772d 1fb6cb7 497dd15 6be2c8e 497dd15 1fb6cb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-14B-Instruct
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- qwen2.5
- Cot
- elite
- calcium
model-index:
- name: Calcium-Opus-14B-Elite3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 54.28
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 47.07
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 29.38
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 16.11
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.13
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.17
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
name: Open LLM Leaderboard
---
![e3.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/W3fBEzosQE1QQ49B5a3vo.gif)
# **Calcium-Opus-14B-Elite3**
Calcium-Opus-14B-Elite3 is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. These models have proven effective in context understanding, reasoning, and mathematical problem-solving. It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets, with a focus on chain-of-thought (CoT) reasoning for problem-solving. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
Key improvements include:
1. **Enhanced Knowledge and Expertise**: The model demonstrates significantly more knowledge and greatly improved capabilities in coding and mathematics, thanks to specialized expert models in these domains.
2. **Improved Instruction Following**: It shows significant advancements in following instructions, generating long texts (over 8K tokens), understanding structured data (e.g., tables), and producing structured outputs, especially in JSON format.
3. **Better Adaptability**: The model is more resilient to diverse system prompts, enabling enhanced role-playing implementations and condition-setting for chatbots.
4. **Long-Context Support**: It offers long-context support of up to 128K tokens and can generate up to 8K tokens in a single output.
5. **Multilingual Proficiency**: The model supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
# **Quickstart with transformers**
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Calcium-Opus-14B-Elite3"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
# **Intended Use**
1. **Reasoning and Context Understanding**:\
Designed to assist with complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction and critical thinking.
2. **Mathematical Problem-Solving**:\
Specialized for performing advanced mathematical reasoning and calculations, making it suitable for educational, scientific, and research-oriented applications.
3. **Code Generation and Debugging**:\
Offers robust support for coding tasks, including writing, debugging, and optimizing code in various programming languages, ideal for developers and software engineers.
4. **Structured Data Analysis**:\
Excels in processing and analyzing structured data, such as tables and JSON, and generating structured outputs, which is useful for data analysts and automation workflows.
5. **Multilingual Applications**:\
Supports over 29 languages, making it versatile for global applications like multilingual chatbots, content generation, and translations.
6. **Extended Content Generation**:\
Capable of generating long-form content (over 8K tokens), useful for writing reports, articles, and creating detailed instructional guides.
# **Limitations**
1. **Hardware Requirements**:\
Due to its 20B parameter size and support for long-context inputs, running the model requires significant computational resources, including high-memory GPUs or TPUs.
2. **Potential Bias in Multilingual Outputs**:\
While it supports 29 languages, the quality and accuracy of outputs may vary depending on the language, especially for less-resourced languages.
3. **Inconsistent Outputs for Creative Tasks**:\
The model may occasionally produce inconsistent or repetitive results in creative writing, storytelling, or highly subjective tasks.
4. **Limited Real-World Awareness**:\
It lacks real-time knowledge of current events beyond its training cutoff, which may limit its ability to respond accurately to the latest information.
5. **Error Propagation in Long-Text Outputs**:\
In generating long texts, minor errors in early outputs can sometimes propagate, reducing the overall coherence and accuracy of the response.
6. **Dependency on High-Quality Prompts**:\
Performance may depend on the quality and specificity of the input prompt, requiring users to carefully design queries for optimal results.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Calcium-Opus-14B-Elite3-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FCalcium-Opus-14B-Elite3&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 35.86|
|IFEval (0-Shot) | 54.28|
|BBH (3-Shot) | 47.07|
|MATH Lvl 5 (4-Shot)| 29.38|
|GPQA (0-shot) | 16.11|
|MuSR (0-shot) | 20.13|
|MMLU-PRO (5-shot) | 48.17|
|