File size: 8,204 Bytes
5d0e8c7
 
 
 
 
 
 
 
 
 
 
 
 
5e82275
2a6a8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e164953
 
ea39693
e164953
6eac1db
e164953
 
6eac1db
e164953
6eac1db
 
e164953
6eac1db
 
e164953
6eac1db
 
e164953
6eac1db
 
e164953
6eac1db
 
e164953
 
 
6eac1db
 
e164953
 
 
8a64475
e164953
 
 
 
 
 
 
 
6eac1db
e164953
6eac1db
e164953
 
 
 
 
 
 
 
 
 
 
6eac1db
e164953
 
 
 
 
 
 
 
 
6eac1db
 
e164953
6eac1db
 
e164953
 
6eac1db
 
 
 
e164953
6eac1db
 
e164953
6eac1db
 
e164953
 
 
6eac1db
 
e164953
6eac1db
 
e164953
6eac1db
 
e164953
6eac1db
 
e164953
6eac1db
2a6a8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- opus
- code
- cot
- lcot
- LlaMa
model-index:
- name: Taurus-Opus-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 42.23
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 34.23
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 22.73
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.18
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.22
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 32.79
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
      name: Open LLM Leaderboard
---

# **Taurus-Opus-7B**

Taurus-Opus-7B is built upon the LLaMA (Large Language Model Meta AI) 7B architecture, optimized to provide advanced reasoning capabilities while maintaining efficiency. With 7 billion parameters, it strikes a balance between performance and computational resource requirements. The model has been fine-tuned with a focus on chain-of-thought (CoT) reasoning, leveraging specialized datasets to enhance its problem-solving abilities. Taurus-Opus-7B is designed for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and coding assistance.


# **Key Features and Improvements**

1. **Optimized Reasoning Capabilities**:  
   The model showcases significant improvements in context understanding, reasoning, and mathematical problem-solving through fine-tuning with long CoT datasets.

2. **Enhanced Instruction Following**:  
   Taurus-Opus-7B excels in generating long, coherent outputs (up to 4K tokens), understanding structured data, and producing structured outputs like JSON.

3. **Lightweight Efficiency**:  
   Its 7B parameter size makes it more resource-efficient compared to larger models while retaining high-quality performance for reasoning and content generation tasks.

4. **Long-Context Support**:  
   Offers support for long contexts of up to 64K tokens, enabling the handling of large datasets or extended conversations.

5. **Multilingual Proficiency**:  
   The model supports 20+ languages, including English, Spanish, French, German, Portuguese, Chinese, Japanese, and more, making it suitable for global applications.

# **Quickstart with transformers**

Here’s a code snippet to load **Taurus-Opus-7B** using the `transformers` library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Taurus-Opus-7B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Explain the importance of chain-of-thought reasoning in large language models."
messages = [
    {"role": "system", "content": "You are a helpful assistant with expertise in logical reasoning and problem-solving."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
# **Intended Use**

1. **Reasoning and Context Understanding**:  
   Taurus-Opus-7B is tailored for complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction.

2. **Mathematical Problem-Solving**:  
   Designed for advanced mathematical reasoning and calculations, making it valuable for education, research, and engineering tasks.

3. **Code Assistance**:  
   Provides robust coding support, including writing, debugging, and optimizing code across multiple programming languages.

4. **Data Analysis**:  
   Excels in analyzing structured data and generating structured outputs, aiding automation workflows and data-driven insights.

5. **Multilingual Support**:  
   Facilitates applications such as multilingual chatbots, content generation, and translation in 20+ languages.

6. **Extended Content Generation**:  
   Suitable for generating detailed reports, articles, and instructional guides, handling outputs up to 4K tokens.

# **Limitations**

1. **Hardware Requirements**:  
   While more efficient than larger models, Taurus-Opus-7B still requires high-memory GPUs or TPUs for optimal performance.

2. **Language Quality Variations**:  
   Output quality may vary across supported languages, especially for less commonly used languages.

3. **Creativity Limitations**:  
   The model may sometimes generate repetitive or inconsistent results in creative or highly subjective tasks.

4. **Real-Time Knowledge Constraints**:  
   The model lacks awareness of events or knowledge updates beyond its training data.

5. **Prompt Dependency**:  
   Results heavily depend on the specificity and clarity of input prompts, requiring well-structured queries for the best performance.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Taurus-Opus-7B-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FTaurus-Opus-7B&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    26.06|
|IFEval (0-Shot)    |    42.23|
|BBH (3-Shot)       |    34.23|
|MATH Lvl 5 (4-Shot)|    22.73|
|GPQA (0-shot)      |    10.18|
|MuSR (0-shot)      |    14.22|
|MMLU-PRO (5-shot)  |    32.79|