File size: 8,204 Bytes
5d0e8c7 5e82275 2a6a8e7 e164953 ea39693 e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 8a64475 e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db e164953 6eac1db 2a6a8e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- opus
- code
- cot
- lcot
- LlaMa
model-index:
- name: Taurus-Opus-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 42.23
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 34.23
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 22.73
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.18
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 14.22
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.79
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FTaurus-Opus-7B
name: Open LLM Leaderboard
---
# **Taurus-Opus-7B**
Taurus-Opus-7B is built upon the LLaMA (Large Language Model Meta AI) 7B architecture, optimized to provide advanced reasoning capabilities while maintaining efficiency. With 7 billion parameters, it strikes a balance between performance and computational resource requirements. The model has been fine-tuned with a focus on chain-of-thought (CoT) reasoning, leveraging specialized datasets to enhance its problem-solving abilities. Taurus-Opus-7B is designed for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and coding assistance.
# **Key Features and Improvements**
1. **Optimized Reasoning Capabilities**:
The model showcases significant improvements in context understanding, reasoning, and mathematical problem-solving through fine-tuning with long CoT datasets.
2. **Enhanced Instruction Following**:
Taurus-Opus-7B excels in generating long, coherent outputs (up to 4K tokens), understanding structured data, and producing structured outputs like JSON.
3. **Lightweight Efficiency**:
Its 7B parameter size makes it more resource-efficient compared to larger models while retaining high-quality performance for reasoning and content generation tasks.
4. **Long-Context Support**:
Offers support for long contexts of up to 64K tokens, enabling the handling of large datasets or extended conversations.
5. **Multilingual Proficiency**:
The model supports 20+ languages, including English, Spanish, French, German, Portuguese, Chinese, Japanese, and more, making it suitable for global applications.
# **Quickstart with transformers**
Here’s a code snippet to load **Taurus-Opus-7B** using the `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Taurus-Opus-7B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Explain the importance of chain-of-thought reasoning in large language models."
messages = [
{"role": "system", "content": "You are a helpful assistant with expertise in logical reasoning and problem-solving."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
# **Intended Use**
1. **Reasoning and Context Understanding**:
Taurus-Opus-7B is tailored for complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction.
2. **Mathematical Problem-Solving**:
Designed for advanced mathematical reasoning and calculations, making it valuable for education, research, and engineering tasks.
3. **Code Assistance**:
Provides robust coding support, including writing, debugging, and optimizing code across multiple programming languages.
4. **Data Analysis**:
Excels in analyzing structured data and generating structured outputs, aiding automation workflows and data-driven insights.
5. **Multilingual Support**:
Facilitates applications such as multilingual chatbots, content generation, and translation in 20+ languages.
6. **Extended Content Generation**:
Suitable for generating detailed reports, articles, and instructional guides, handling outputs up to 4K tokens.
# **Limitations**
1. **Hardware Requirements**:
While more efficient than larger models, Taurus-Opus-7B still requires high-memory GPUs or TPUs for optimal performance.
2. **Language Quality Variations**:
Output quality may vary across supported languages, especially for less commonly used languages.
3. **Creativity Limitations**:
The model may sometimes generate repetitive or inconsistent results in creative or highly subjective tasks.
4. **Real-Time Knowledge Constraints**:
The model lacks awareness of events or knowledge updates beyond its training data.
5. **Prompt Dependency**:
Results heavily depend on the specificity and clarity of input prompts, requiring well-structured queries for the best performance.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Taurus-Opus-7B-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FTaurus-Opus-7B&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 26.06|
|IFEval (0-Shot) | 42.23|
|BBH (3-Shot) | 34.23|
|MATH Lvl 5 (4-Shot)| 22.73|
|GPQA (0-shot) | 10.18|
|MuSR (0-shot) | 14.22|
|MMLU-PRO (5-shot) | 32.79|
|