angel-poc commited on
Commit
1891419
·
1 Parent(s): da950a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -0
README.md CHANGED
@@ -1,3 +1,148 @@
1
  ---
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ca
4
  license: apache-2.0
5
+ tags:
6
+ - "catalan"
7
+ - "masked-lm"
8
+ - "longformer"
9
+ - "longformer-base-4096-ca"
10
+ - "CaText"
11
+ - "Catalan Textual Corpus"
12
+
13
+ widget:
14
+ - text: "El Català és una llengua molt <mask>."
15
+ - text: "Salvador Dalí va viure a <mask>."
16
+ - text: "La Costa Brava té les millors <mask> d'Espanya."
17
+ - text: "El cacaolat és un batut de <mask>."
18
+ - text: "<mask> és la capital de la Garrotxa."
19
+ - text: "Vaig al <mask> a buscar bolets."
20
+ - text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat."
21
+ - text: "Catalunya és una referència en <mask> a nivell europeu."
22
+
23
  ---
24
+
25
+ # Catalan Longformer (longformer-base-4096-ca) base model
26
+
27
+ ## Table of Contents
28
+ <details>
29
+ <summary>Click to expand</summary>
30
+
31
+ - [Model description](#model-description)
32
+ - [Intended uses and limitations](#intended-use)
33
+ - [How to use](#how-to-use)
34
+ - [Limitations and bias](#limitations-and-bias)
35
+ - [Training](#training)
36
+ - [Training data](#training-data)
37
+ - [Training procedure](#training-procedure)
38
+ - [Evaluation](#evaluation)
39
+ - [CLUB benchmark](#club-benchmark)
40
+ - [Evaluation results](#evaluation-results)
41
+ - [Licensing Information](#licensing-information)
42
+ - [Additional information](#additional-information)
43
+ - [Author](#author)
44
+ - [Contact information](#contact-information)
45
+ - [Copyright](#copyright)
46
+ - [Licensing information](#licensing-information)
47
+ - [Funding](#funding)
48
+ - [Citing information](#citing-information)
49
+ - [Disclaimer](#disclaimer)
50
+
51
+ </details>
52
+
53
+ ## Model description
54
+
55
+ The **longformer-base-4096-ca** is a transformer-based masked language model for the Catalan language.
56
+ It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model
57
+ and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.
58
+
59
+ The **longformer-base-4096-ca** is the [Longformer](https://huggingface.co/allenai/longformer-base-4096) version of the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) masked language model for the Catalan language. Using this Longformer architecture we can process contexts of up to 4096 tokens without the need of additional aggregation strategies. The pretraining process of this model started from the **roberta-base-ca-v2** checkpoint and was pretrained for MLM on both short and long documents in Catalan.
60
+
61
+ The Longformer model uses a combination of sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. Please refer to the original [paper](https://arxiv.org/abs/2004.05150) for more details on how to set global attention.
62
+
63
+ ## Intended uses and limitations
64
+
65
+ **longformer-base-4096-ca** model is ready-to-use only for masked language modeling to perform the Fill Mask task (try the inference API or read the next section).
66
+ However, it is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification, or Named Entity Recognition.
67
+
68
+ ## How to use
69
+
70
+ Here is how to use this model:
71
+
72
+ ```python
73
+ from transformers import AutoModelForMaskedLM
74
+ from transformers import AutoTokenizer, FillMaskPipeline
75
+ from pprint import pprint
76
+ tokenizer_hf = AutoTokenizer.from_pretrained('projecte-aina/longformer-base-4096-ca')
77
+ model = AutoModelForMaskedLM.from_pretrained('projecte-aina/longformer-base-4096-ca')
78
+ model.eval()
79
+ pipeline = FillMaskPipeline(model, tokenizer_hf)
80
+ text = f"Em dic <mask>."
81
+ res_hf = pipeline(text)
82
+ pprint([r['token_str'] for r in res_hf])
83
+ ```
84
+
85
+ ## Limitations and bias
86
+ At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpus have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
87
+
88
+
89
+ ## Training
90
+
91
+ ### Training data
92
+
93
+ The training corpus consists of several corpora gathered from web crawling and public corpora.
94
+
95
+
96
+ | Corpus | Size in GB |
97
+ |-------------------------|------------|
98
+ | Catalan Crawling | 13.00 |
99
+ | Wikipedia | 1.10 |
100
+ | DOGC | 0.78 |
101
+ | Catalan Open Subtitles | 0.02 |
102
+ | Catalan Oscar | 4.00 |
103
+ | CaWaC | 3.60 |
104
+ | Cat. General Crawling | 2.50 |
105
+ | Cat. Goverment Crawling | 0.24 |
106
+ | ACN | 0.42 |
107
+ | Padicat | 0.63 |
108
+ | RacoCatalá | 8.10 |
109
+ | Nació Digital | 0.42 |
110
+ | Vilaweb | 0.06 |
111
+ | Tweets | 0.02 |
112
+
113
+ For this specific pre-training process we have used a subset of this corpus of 5,3 GB.
114
+
115
+ ### Training procedure
116
+
117
+ The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens. The RoBERTa-base-bne pre-training consists of a masked language model training that follows the approach employed for the RoBERTa base. The training lasted a total of 37 hours with 8 computing nodes each one with 2 AMD MI50 GPUs of 32GB VRAM.
118
+
119
+ ## Additional information
120
+
121
+ ### Author
122
+ Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
123
+
124
+ ### Contact information
125
+ For further information, send an email to [email protected]
126
+
127
+ ### Copyright
128
+ Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
129
+
130
+ ### Licensing information
131
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
132
+
133
+ ### Funding
134
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
135
+
136
+
137
+ ### Disclaimer
138
+
139
+ <details>
140
+ <summary>Click to expand</summary>
141
+
142
+ The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
143
+
144
+ When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
145
+
146
+ In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
147
+
148
+ </details>