Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pipeline_tag: text-classification
|
5 |
+
inference: false
|
6 |
+
datasets:
|
7 |
+
- sid321axn/malicious-urls-dataset
|
8 |
+
tags:
|
9 |
+
- malicious-urls
|
10 |
+
- url
|
11 |
+
---
|
12 |
+
|
13 |
+
# ONNX version of DunnBC22/codebert-base-Malicious_URLs
|
14 |
+
|
15 |
+
**This model is a conversion of [DunnBC22/codebert-base-Malicious_URLs](https://huggingface.co/DunnBC22/codebert-base-Malicious_URLs) to ONNX** format. It's based on the CodeBERT architecture, tailored for the specific task of identifying URLs that may pose security threats. The model was converted to ONNX using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
|
16 |
+
|
17 |
+
## Model Architecture
|
18 |
+
|
19 |
+
**Base Model**: CodeBERT-base, a robust model for programming and natural languages.
|
20 |
+
|
21 |
+
**Dataset**: [https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset](https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset).
|
22 |
+
|
23 |
+
**Modifications**: Details of any modifications or fine-tuning done to tailor the model for malicious URL detection.
|
24 |
+
|
25 |
+
## Usage
|
26 |
+
|
27 |
+
Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
|
28 |
+
|
29 |
+
```python
|
30 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
31 |
+
from transformers import AutoTokenizer, pipeline
|
32 |
+
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx")
|
35 |
+
model = ORTModelForSequenceClassification.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx")
|
36 |
+
classifier = pipeline(
|
37 |
+
task="text-classification",
|
38 |
+
model=model,
|
39 |
+
tokenizer=tokenizer,
|
40 |
+
top_k=None,
|
41 |
+
)
|
42 |
+
|
43 |
+
classifier_output = classifier("https://google.com")
|
44 |
+
print(classifier_output)
|
45 |
+
```
|