prsdm commited on
Commit
7015892
·
verified ·
1 Parent(s): 6afe186

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -4
README.md CHANGED
@@ -17,6 +17,8 @@ tags:
17
  😸<a href="https://github.com/prsdm/fine-tuning-llms/blob/main/Fine-tuning-phi-2-model.ipynb">GitHub</a> •📝<a href="https://medium.com/@prasadmahamulkar/fine-tuning-phi-2-a-step-by-step-guide-e672e7f1d009">Article</a> • Models & Datasets on: 🤗<a href="https://huggingface.co/prsdm">Hugging Face</a>
18
  </p>
19
 
 
 
20
  This repository provides a collection of Jupyter notebooks that demonstrate how to fine-tune large language models using various tools and techniques.
21
 
22
  fine-tuning or instruction tuning is the process where the pre-trained model is further trained on the smaller dataset to adapt its knowledge for a specific task or domain. This process tweaks the model’s parameters to perform specific tasks. In fine-tuning, there are two methods:
@@ -35,7 +37,3 @@ In RLHF, the model interacts with users, generates responses, and receives feedb
35
  | [llama-2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | This model has been fine-tuned on a dataset with human-generated prompts to answer questions related to general knowledge. (used SFT method) | [Dataset](https://huggingface.co/datasets/prsdm/finance-llama2-1k) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prsdm/fine-tuning-llms/blob/main/Fine-tuning-llama-2-model.ipynb) | [llama-2-finance](https://huggingface.co/prsdm/llama-2-finance) |
36
 
37
 
38
- ### Diagram:
39
-
40
- ![diagram](https://github.com/user-attachments/assets/b84531b3-9935-4e2f-bd05-e0f88f95edb6)
41
-
 
17
  😸<a href="https://github.com/prsdm/fine-tuning-llms/blob/main/Fine-tuning-phi-2-model.ipynb">GitHub</a> •📝<a href="https://medium.com/@prasadmahamulkar/fine-tuning-phi-2-a-step-by-step-guide-e672e7f1d009">Article</a> • Models & Datasets on: 🤗<a href="https://huggingface.co/prsdm">Hugging Face</a>
18
  </p>
19
 
20
+ ![diagram](https://github.com/user-attachments/assets/b84531b3-9935-4e2f-bd05-e0f88f95edb6)
21
+
22
  This repository provides a collection of Jupyter notebooks that demonstrate how to fine-tune large language models using various tools and techniques.
23
 
24
  fine-tuning or instruction tuning is the process where the pre-trained model is further trained on the smaller dataset to adapt its knowledge for a specific task or domain. This process tweaks the model’s parameters to perform specific tasks. In fine-tuning, there are two methods:
 
37
  | [llama-2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | This model has been fine-tuned on a dataset with human-generated prompts to answer questions related to general knowledge. (used SFT method) | [Dataset](https://huggingface.co/datasets/prsdm/finance-llama2-1k) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prsdm/fine-tuning-llms/blob/main/Fine-tuning-llama-2-model.ipynb) | [llama-2-finance](https://huggingface.co/prsdm/llama-2-finance) |
38
 
39