File size: 6,532 Bytes
f48ce8a d79bf7a c01b227 f48ce8a fc448c2 d79bf7a f48ce8a fc448c2 c01b227 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a fc448c2 d79bf7a 9d769d1 fc448c2 9d769d1 fc448c2 9d769d1 fc448c2 9d769d1 fc448c2 9d769d1 d79bf7a 9d769d1 d79bf7a 9d769d1 fc448c2 d79bf7a fc448c2 3f4e984 52c0dcc 3f4e984 d79bf7a f48ce8a ff6646d f48ce8a c01b227 ff6646d f48ce8a c01b227 2f3cd93 c01b227 f48ce8a c01b227 f48ce8a fc448c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
language:
- en
license:
- apache-2.0
- cc-by-nc-4.0
tags:
- generated_from_trainer
- instruct
- instructions
- code
- instructiongen
datasets: pszemraj/fleece2instructions-codealpaca
metrics:
- rouge
widget:
- text: 'git lfs install
huggingface-cli lfs-enable-largefiles .
git lfs track "*.bin"
git add .
git commit -a -m "add fp32 chkpt"
git push
'
example_title: bash
- text: "export interface DocumentParams {\n pageContent: string;\n\n // eslint-disable-next-line\
\ @typescript-eslint/no-explicit-any\n metadata: Record<string, any>;\n}\n\n\
/**\n * Interface for interacting with a document.\n */\nexport class Document\
\ implements DocumentParams {\n pageContent: string;\n\n // eslint-disable-next-line\
\ @typescript-eslint/no-explicit-any\n metadata: Record<string, any>;\n\n constructor(fields?:\
\ Partial<DocumentParams>) {\n this.pageContent = fields?.pageContent ?? this.pageContent;\n\
\ this.metadata = fields?.metadata ?? {};\n }\n}\n"
example_title: js
- text: "def merge(left, right):\n if len(left) == 0:\n return right\n\n\
\ if len(right) == 0:\n return left\n\n result = []\n index_left\
\ = index_right = 0\n\n while len(result) < len(left) + len(right):\n \
\ if left[index_left] <= right[index_right]:\n result.append(left[index_left])\n\
\ index_left += 1\n else:\n result.append(right[index_right])\n\
\ index_right += 1\n\n if index_right == len(right):\n \
\ result += left[index_left:]\n break\n\n if index_left\
\ == len(left):\n result += right[index_right:]\n break\n\
\n return result\n"
example_title: merge
- text: "import pandas as pd\nimport plotly.graph_objects as go\n\ndf = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_apple_stock.csv')\n\
\nfig = go.Figure(go.Scatter(x = df['AAPL_x'], y = df['AAPL_y'],\n \
\ name='Share Prices (in USD)'))\n\nfig.update_layout(title='Apple Share\
\ Prices over time (2014)',\n plot_bgcolor='rgb(230, 230,230)',\n\
\ showlegend=True)\n\nfig.show()\n"
example_title: plot
- text: "from spellchecker import SpellChecker\n\nspell = SpellChecker()\n\ndef check_word_spelling(word:\
\ str):\n misspelled = spell.unknown([word])\n return len(misspelled) ==\
\ 0\n\ndef eval_and_replace(text: str, match_token: str = \"- \"):\n if match_token\
\ not in text:\n return text\n else:\n while True:\n \
\ full_before_text = text.split(match_token, maxsplit=1)[0]\n before_text\
\ = [\n char for char in full_before_text.split()[-1] if char.isalpha()\n\
\ ]\n before_text = \"\".join(before_text)\n \
\ full_after_text = text.split(match_token, maxsplit=1)[-1]\n after_text\
\ = [char for char in full_after_text.split()[0] if char.isalpha()]\n \
\ after_text = \"\".join(after_text)\n full_text = before_text +\
\ after_text\n if check_word_spelling(full_text):\n \
\ text = full_before_text + full_after_text\n else:\n \
\ text = full_before_text + \" \" + full_after_text\n if match_token\
\ not in text:\n break\n return text\n\ntext = \"I- am-\
\ a go- od- boy\"\neval_and_replace(text)\n"
example_title: spell check
- text: 'import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequences = ["I''ve been waiting for a HuggingFace course my whole life.", "So
have I!"]
tokens = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt")
output = model(**tokens)
'
example_title: model inference
inference:
parameters:
max_length: 96
num_beams: 4
base_model: facebook/bart-base
---
# bart-base-code-instructiongen
Use this text2text model to find out what LLM instructions might be able to generate an arbitary piece of code!
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the `pszemraj/fleece2instructions-codealpaca` dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0136
- Rouge1: 59.9513
- Rouge2: 33.9118
- Rougel: 55.7815
- Rougelsum: 56.9064
- Gen Len: 29.7146
## Intended uses & limitations
🚨 **note:** as the authors elected to release the [original dataset](https://github.com/sahil280114/codealpaca) under `cc-by-nc`, the license carries over to this model and **cannot be used for commercial activity**.
> This is just a `base` size model, which does a decent job for its size, but is not perfect. For better quality instructions, check out [bart-large](https://huggingface.co/pszemraj/bart-large-code-instructiongen) or fine tune your own larger model on the dataset :)
Intended use: Research on domain adaptation and/or other improvements to LLMs by extending instruction:text data pairs.
## Training and evaluation data
Refer to the linked dataset card for `pszemraj/fleece2instructions-codealpaca` or the [original dataset](https://github.com/sahil280114/codealpaca) repo.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.1165 | 1.0 | 281 | 1.1090 | 57.9239 | 31.9259 | 53.8737 | 54.9811 | 28.2924 |
| 1.0763 | 2.0 | 563 | 1.0267 | 59.9605 | 34.0298 | 55.7523 | 56.8021 | 29.6966 |
| 0.9595 | 2.99 | 843 | 1.0136 | 59.9513 | 33.9118 | 55.7815 | 56.9064 | 29.7146 | |