File size: 2,709 Bytes
160c7d9 8c2135b 4a4daf7 160c7d9 4a4daf7 160c7d9 907b232 160c7d9 907b232 7d2d12d 907b232 160c7d9 8c2135b 4a4daf7 160c7d9 907b232 160c7d9 4a4daf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: facebook/dinov2-base-imagenet1k-1-layer
tags:
- image-classification
- vision
- boulderspot
- climbing
- aerial imagery
- remote sensing
- bouldering
metrics:
- accuracy
- f1
- precision
- recall
- matthews_correlation
datasets:
- pszemraj/boulderspot
---
<!-- waddup. -->
# dinov2-base-1k_1L-boulderspot
This is a model fine-tuned to classify whether an aerial/satellite image contains a climbing area or not.
You can find some images to test inference with [in this old repo from the original project](https://github.com/pszemraj/BoulderAreaDetector/tree/cbb22bdb3373b4b72d798dedfcb28543c0dc769d/test_images)
## Model description
This model is a fine-tuned version of [facebook/dinov2-base-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-base-imagenet1k-1-layer) on the pszemraj/boulderspot dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0519
- Accuracy: 0.9810
- F1: 0.9809
- Precision: 0.9808
- Recall: 0.9810
- Matthews Correlation: 0.8501
## Intended uses & limitations
Classification of aerial/satellite imagery, ideally with spacial resolution 10-25 cm (_i.e. for 10 cm, each pixel in the image corresonds to approx. 10 cm x 10 cm area on the ground_). It may be suitable outside of that, but should be validated as other resolutions were not present in the training data.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 7395
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------:|
| 0.1596 | 1.0 | 203 | 0.0733 | 0.9766 | 0.9759 | 0.9757 | 0.9766 | 0.8079 |
| 0.0635 | 2.0 | 406 | 0.1276 | 0.9474 | 0.9522 | 0.9619 | 0.9474 | 0.6845 |
| 0.1031 | 3.0 | 609 | 0.0602 | 0.9751 | 0.9755 | 0.9760 | 0.9751 | 0.8118 |
| 0.0587 | 4.0 | 813 | 0.0512 | 0.9737 | 0.9734 | 0.9732 | 0.9737 | 0.7905 |
| 0.038 | 4.99 | 1015 | 0.0519 | 0.9810 | 0.9809 | 0.9808 | 0.9810 | 0.8501 |
### Framework versions
- Transformers 4.39.2
- Pytorch 2.4.0.dev20240328+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |