File size: 20,237 Bytes
05a8e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
---

tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2382
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1
widget:
- source_sentence: Collect the details that are associated with product '- Com espessura

    constante de' '- 0,04 m', with quantity 1900, unit M2
  sentences:
  - 'Item Description: UNKNOWN PRODUCT, priced at 949.00 EUR, Origin: National'
  - 'Product: UNKNOWN PRODUCT, Estimated Value: 514.00 EUR'
  - "Details for 'MacBook Pro 14\" Processador M2/3 16GB/18GB RAM | SSD 512GB | Teclado\

    \ Es-Es', with quantity 1, unit UN:\n  - LOTE 31\n  - Price: 656.00 EUR"
- source_sentence: Collect the details that are associated with Lot 14 product ''
    'Monitor de Sinais Vitais ', with quantity 2, unit Subcontracting Unit
  sentences:
  - "Details for 'Monitor de Sinais Vitais ', with quantity 2, unit Subcontracting\

    \ Unit:\n  - LOTE 60\n  - Price: 564.00 EUR"
  - "Details for UNKNOWN PRODUCT:\n  - LOTE 90\n  - Price: 658.00 EUR"
  - 'Item Description: UNKNOWN PRODUCT, priced at 90.00 EUR, Origin: National'
- source_sentence: Collect the details that are associated with product '' '2202000270

    - FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF AG. CILIND. 17 MM 1/2 C (UNID)',
    with quantity 288, unit UN
  sentences:
  - 'Item Description: ''2202000270 - FIO SUT. AC. POLIGLIC. ABS. RÁPIDA 4/0 MULTIF

    AG. CILIND. 17 MM 1/2 C (UNID)'', with quantity 288, unit UN, priced at 66.00

    EUR, Origin: National'
  - 'Product: ''2202000285 - FIO SUT. POLIPROPI. NÃO ABS. 4/0 MONOF. AG. LANC. 16

    MM 3/8 (UNID)'', with quantity 468, unit UN, Estimated Value: 619.00 EUR'
  - 'Item Description: ''Carro transporte de roupa limpa/roupa suja'', with quantity

    1, unit Subcontracting Unit, priced at 574.00 EUR, Origin: National'
- source_sentence: Collect the details that are associated with product '' '2202000006

    - FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)', with quantity 72, unit
    UN
  sentences:
  - 'Item Description: ''2202000309 - FIO SUT. ABS. MÉDIO PRAZO 2/0 MONOF. BARBADO,

    C/ AG. CILIND. 30MM 1/2C, 23CM (CART.)'', with quantity 24, unit UN, priced at

    206.00 EUR, Origin: National'
  - "Details for '2202000006 - FIO SUT. SEDA NÃO ABS. 0 MULTIF. SEM AGULHA (CART.)',\

    \ with quantity 72, unit UN:\n  - LOTE 82\n  - Price: 854.00 EUR"
  - 'LOTE 10



    Description: ''Mesas apoio (anestesia e circulante)'', with quantity 4, unit Subcontracting

    Unit



    Price: 117.00 EUR'
- source_sentence: Collect the details that are associated with product '' '2202000251

    - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity
    144, unit UN
  sentences:
  - "Details for UNKNOWN PRODUCT:\n  - LOTE 34\n  - Price: 477.00 EUR"
  - "Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C\

    \ 90CM (CART.)', with quantity 144, unit UN:\n  - LOTE 73\n  - Price: 644.00 EUR"
  - 'Item Description: ''Mesas de Mayo'', with quantity 2, unit Subcontracting Unit,

    priced at 651.00 EUR, Origin: National'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
---


# SentenceTransformer based on nomic-ai/nomic-embed-text-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) <!-- at revision 720244025c1a7e15661a174c63cce63c8218e52b -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("ptpedroVortal/nomic_vortal_v3.4")

# Run inference

sentences = [

    "Collect the details that are associated with product '' '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN",

    "Details for '2202000251 - FIO SUT. ABS. LONGA 1 MONOF. AG. CILIND. 48 MM 1/2C 90CM (CART.)', with quantity 144, unit UN:\n  - LOTE 73\n  - Price: 644.00 EUR",

    "Item Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit, priced at 651.00 EUR, Origin: National",

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with <code>__main__.CustomEvaluator</code>

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |

| **spearman_cosine** | **nan** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset





* Size: 2,382 training samples

* Columns: <code>query</code>, <code>correct_node</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | correct_node                                                                         | score                        |

  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------|

  | type    | string                                                                             | string                                                                               | int                          |

  | details | <ul><li>min: 15 tokens</li><li>mean: 56.3 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 49.65 tokens</li><li>max: 1729 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |

* Samples:

  | query                                                                                                                                                                                  | correct_node                                                                                                                                                                | score          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Collect the details that are associated with product '' '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN</code> | <code>LOTE 98<br>Description: '2202000275 - FIO SUT. POLIAMIDA NÃO ABS. 2/0 MONOF AG. CILIND. 30MM 1/2 LOOP (UNID)', with quantity 216, unit UN<br>Price: 940.00 EUR</code> | <code>1</code> |
  | <code>Collect the details that are associated with product '' '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN</code>   | <code>Product: '2202000294 - FIO SUT. AC. POLIGLIC. ABS. 2/0 MULTIF SEM AGULHA PRÉ CORTADO (UNID)', with quantity 324, unit UN, Estimated Value: 696.00 EUR</code>          | <code>1</code> |
  | <code>Collect the details that are associated with Lot 4 product '' 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit</code>                                                  | <code>LOTE 44<br>Description: 'Mesas de Mayo', with quantity 2, unit Subcontracting Unit<br>Price: 542.00 EUR</code>                                                        | <code>1</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 297 evaluation samples
* Columns: <code>query</code>, <code>correct_node</code>, and <code>score</code>

* Approximate statistics based on the first 297 samples:

  |         | query                                                                               | correct_node                                                                        | score                        |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                              | string                                                                              | int                          |
  | details | <ul><li>min: 15 tokens</li><li>mean: 55.37 tokens</li><li>max: 154 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 46.58 tokens</li><li>max: 435 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
  | query                                                                                                                                                  | correct_node                                                                                                                                       | score          |

  |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|

  | <code>Collect the details that are associated with Lot 7 product '' 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit</code> | <code>Item Description: 'Carro transporte de roupa suja', with quantity 1, unit Subcontracting Unit, priced at 628.00 EUR, Origin: National</code> | <code>1</code> |

  | <code>Collect the details that are associated with Lot 10 product '' 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit</code>           | <code>Details for 'Mesas para cirurgia', with quantity 2, unit Subcontracting Unit:<br>  - LOTE 83<br>  - Price: 940.00 EUR</code>                 | <code>1</code> |

  | <code>Collect the details that are associated with Lot 1 product '' 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND</code>    | <code>Product: 'PAINEL MULTIPLO ALERGENOS RESPIRATORIOS ', with quantity 1152, unit UND, Estimated Value: 714.00 EUR</code>                        | <code>1</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | Validation Loss | spearman_cosine |

|:----------:|:-------:|:-------------:|:---------------:|:---------------:|

| 0.6711     | 100     | 0.6485        | 0.4410          | nan             |

| 1.3356     | 200     | 0.5026        | 0.4399          | nan             |

| **2.0067** | **300** | **0.491**     | **0.4175**      | **nan**         |

| 2.6711     | 400     | 0.442         | 0.4409          | nan             |

| 3.3356     | 500     | 0.3999        | 0.4421          | nan             |

| 4.0067     | 600     | 0.367         | 0.6182          | nan             |

| 4.6711     | 700     | 0.3743        | 0.6104          | nan             |

| 5.3356     | 800     | 0.1972        | 0.6115          | nan             |



* The bold row denotes the saved checkpoint.



### Framework Versions

- Python: 3.10.14

- Sentence Transformers: 3.3.1

- Transformers: 4.47.0.dev0

- PyTorch: 2.5.1+cu121

- Accelerate: 1.1.1

- Datasets: 3.1.0

- Tokenizers: 0.20.4



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->