Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1411 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
pipeline_tag: image-classification
|
6 |
---
|
7 |
+
```python
|
8 |
+
import numpy as np
|
9 |
+
import scipy.special as ssp
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
```
|
12 |
+
|
13 |
+
|
14 |
+
```python
|
15 |
+
input_nodes=784 # 输入层节点数
|
16 |
+
hide_nodes=200 # 隐藏层节点数,理论上越高越好,但是高到一定程度就到顶了(默认:200)
|
17 |
+
out_nodes=10 # 输出层节点数
|
18 |
+
learningrate = 0.1 #学习率
|
19 |
+
```
|
20 |
+
|
21 |
+
|
22 |
+
```python
|
23 |
+
wih = np.random.normal(0.0, pow(hide_nodes, -0.5), (hide_nodes, input_nodes)) #矩阵大小为隐藏层节点数×输入层节点数
|
24 |
+
#np.random.normal()的意思是一个正态分布,normal这里是正态的意思
|
25 |
+
plt.hist(wih)
|
26 |
+
```
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
(array([[ 1., 2., 3., ..., 8., 0., 0.],
|
32 |
+
[ 0., 0., 2., ..., 4., 0., 0.],
|
33 |
+
[ 0., 1., 5., ..., 9., 0., 0.],
|
34 |
+
...,
|
35 |
+
[ 0., 1., 2., ..., 10., 0., 0.],
|
36 |
+
[ 0., 1., 13., ..., 7., 0., 0.],
|
37 |
+
[ 0., 2., 8., ..., 3., 1., 0.]]),
|
38 |
+
array([-0.32167192, -0.25702275, -0.19237358, -0.12772441, -0.06307524,
|
39 |
+
0.00157393, 0.0662231 , 0.13087226, 0.19552143, 0.2601706 ,
|
40 |
+
0.32481977]),
|
41 |
+
<a list of 784 BarContainer objects>)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
![png](output_2_1.png)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
```python
|
53 |
+
# Visualize weight matrix wih
|
54 |
+
plt.imshow(wih, cmap='coolwarm', aspect='auto')
|
55 |
+
#plt.imshow(wih, cmap='hot', aspect='auto')
|
56 |
+
plt.xlabel('Output Node')
|
57 |
+
plt.ylabel('Hidden Node')
|
58 |
+
plt.title('Weight Matrix (Hidden to input)')
|
59 |
+
plt.colorbar()
|
60 |
+
plt.show()
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
![png](output_3_0.png)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
```python
|
71 |
+
who = np.random.normal(0.0, pow(hide_nodes, -0.5), (out_nodes, hide_nodes)) #矩阵大小为输出层节点数×隐藏层节点数
|
72 |
+
plt.hist(who)
|
73 |
+
#同上
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
(array([[0., 0., 1., ..., 0., 0., 0.],
|
80 |
+
[0., 0., 0., ..., 0., 0., 0.],
|
81 |
+
[0., 0., 0., ..., 1., 1., 0.],
|
82 |
+
...,
|
83 |
+
[0., 0., 0., ..., 1., 1., 0.],
|
84 |
+
[0., 0., 0., ..., 1., 0., 0.],
|
85 |
+
[0., 1., 2., ..., 0., 0., 0.]]),
|
86 |
+
array([-0.26261651, -0.21194208, -0.16126765, -0.11059322, -0.05991879,
|
87 |
+
-0.00924436, 0.04143007, 0.0921045 , 0.14277893, 0.19345336,
|
88 |
+
0.24412779]),
|
89 |
+
<a list of 200 BarContainer objects>)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
![png](output_4_1.png)
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
```python
|
101 |
+
# Visualize weight matrix who
|
102 |
+
plt.imshow(who, cmap='coolwarm', aspect='auto')
|
103 |
+
plt.xlabel('Output Node')
|
104 |
+
plt.ylabel('Hidden Node')
|
105 |
+
plt.title('Weight Matrix (Hidden to Output)')
|
106 |
+
plt.colorbar()
|
107 |
+
plt.show()
|
108 |
+
```
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
![png](output_5_0.png)
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
```python
|
118 |
+
#linspace 参考:https://blog.csdn.net/neweastsun/article/details/99676029
|
119 |
+
x = np.linspace(start=-6, stop=6, num=121) #从-6到6范围内创建121个距离相近的数字,从而生成x数组用于代入后面的y
|
120 |
+
'''
|
121 |
+
e.g.
|
122 |
+
x = np.linspace(start = 0, stop = 100, num = 5) ##从0到100范围内创建5个距离相近的数字
|
123 |
+
print(x)
|
124 |
+
OUT:[ 0. 25. 50. 75. 100.]
|
125 |
+
|
126 |
+
#lambda示例
|
127 |
+
#lambda arg1,arg2,arg3… :<表达式>
|
128 |
+
func=lambda x : x+1 #func=x+1
|
129 |
+
print(func(2)) #func=2+1=3
|
130 |
+
func=lambda x,y : x+y #func=x+y
|
131 |
+
print(func(1,2)) #func=1+2=3
|
132 |
+
'''
|
133 |
+
activation_function = lambda x: ssp.expit(x) #logistic sigmoid函数,定义为expit(x)= 1 /(1 + exp(-x))
|
134 |
+
y = activation_function(x)
|
135 |
+
plt.plot(x, y)
|
136 |
+
plt.xlabel('x')
|
137 |
+
plt.title('logistic sigmoid(x)')
|
138 |
+
plt.show()
|
139 |
+
```
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
![png](output_6_0.png)
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
```python
|
149 |
+
#数据集分为训练集和测试集,训练集有60000条数据,测试集有10000条数据,
|
150 |
+
#每一条数据都是由785个数字组成,数值大小在0~255之间,第一个数字代表该条数据所表示的数字,
|
151 |
+
#后面的784个数字可以形成28×28的矩阵(28x28=784),每一个数值都对应该位置的像素点的像素值灰度大小,由此形成了一幅像素为28×28的图片。
|
152 |
+
|
153 |
+
#这里是训练集
|
154 |
+
|
155 |
+
test_data_file = open("mnist_train.csv", 'r')
|
156 |
+
test_data_list = test_data_file.readlines()
|
157 |
+
test_data_file.close()
|
158 |
+
print("总数据量:",len(test_data_list))
|
159 |
+
print("第1条数据:",test_data_list[0])
|
160 |
+
print("第1条数据表示的数字:",test_data_list[0][0])
|
161 |
+
print("第1条数据的28x28矩阵数据:",test_data_list[0][1:])
|
162 |
+
```
|
163 |
+
|
164 |
+
总数据量: 60000
|
165 |
+
第1条数据: 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175,26,166,255,247,127,0,0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,253,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,190,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,135,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
|
166 |
+
|
167 |
+
第1条数据表示的数字: 5
|
168 |
+
第1条数据的28x28矩阵数据: ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175,26,166,255,247,127,0,0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,253,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,190,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,135,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
```python
|
174 |
+
all_values = test_data_list[0].split(',') # split()函数将第1条数据进行拆分,以‘,’为分界点进行拆分
|
175 |
+
image_array = np.asfarray(all_values[1:]).reshape((28,28)) # asfarray()函数将all_values中的后784个数字进行重新排列
|
176 |
+
# reshape()函数可以对数组进行整型,使其成为28×28的二维数组,asfarry()函数可以使其成为矩阵。
|
177 |
+
plt.imshow(image_array, interpolation = 'nearest') # imshow()函数可以将28×28的矩阵中的数值当做像素值,使其形成图片
|
178 |
+
```
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
<matplotlib.image.AxesImage at 0x7fa3da4adfd0>
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
![png](output_8_1.png)
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
```python
|
195 |
+
#接下去是第1层和最后1层的逻辑
|
196 |
+
```
|
197 |
+
|
198 |
+
|
199 |
+
```python
|
200 |
+
# 对输入的数据进行处理,取后784个数据除以255,再乘以0.99,最后加上0。01,是所有的数据都在0.01到1.00之间
|
201 |
+
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 #输入层,784个输入
|
202 |
+
# 建立准确输出结果矩阵,对应的位置标签数值为0.99,其他位置为0.01
|
203 |
+
#最终实现将0~255转换为0~1的浮点数
|
204 |
+
#可视化中间输出
|
205 |
+
print(inputs)
|
206 |
+
middle_layer_fig = np.asfarray((inputs-0.01)/0.99*255.0 )
|
207 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((28,28))
|
208 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
209 |
+
```
|
210 |
+
|
211 |
+
[0.01 0.01 0.01 0.01 0.01 0.01
|
212 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
213 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
214 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
215 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
216 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
217 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
218 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
219 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
220 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
221 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
222 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
223 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
224 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
225 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
226 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
227 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
228 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
229 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
230 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
231 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
232 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
233 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
234 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
235 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
236 |
+
0.01 0.01 0.02164706 0.07988235 0.07988235 0.07988235
|
237 |
+
0.49917647 0.538 0.68941176 0.11094118 0.65447059 1.
|
238 |
+
0.96894118 0.50305882 0.01 0.01 0.01 0.01
|
239 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
240 |
+
0.01 0.01 0.12647059 0.14976471 0.37494118 0.60788235
|
241 |
+
0.67 0.99223529 0.99223529 0.99223529 0.99223529 0.99223529
|
242 |
+
0.88352941 0.67776471 0.99223529 0.94952941 0.76705882 0.25847059
|
243 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
244 |
+
0.01 0.01 0.01 0.01 0.01 0.20023529
|
245 |
+
0.934 0.99223529 0.99223529 0.99223529 0.99223529 0.99223529
|
246 |
+
0.99223529 0.99223529 0.99223529 0.98447059 0.37105882 0.32835294
|
247 |
+
0.32835294 0.22741176 0.16141176 0.01 0.01 0.01
|
248 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
249 |
+
0.01 0.01 0.01 0.07988235 0.86023529 0.99223529
|
250 |
+
0.99223529 0.99223529 0.99223529 0.99223529 0.77870588 0.71658824
|
251 |
+
0.96894118 0.94564706 0.01 0.01 0.01 0.01
|
252 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
253 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
254 |
+
0.01 0.01 0.32058824 0.61564706 0.42541176 0.99223529
|
255 |
+
0.99223529 0.80588235 0.05270588 0.01 0.17694118 0.60788235
|
256 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
257 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
258 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
259 |
+
0.01 0.06435294 0.01388235 0.60788235 0.99223529 0.35941176
|
260 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
261 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
262 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
263 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
264 |
+
0.01 0.54964706 0.99223529 0.74764706 0.01776471 0.01
|
265 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
266 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
267 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
268 |
+
0.01 0.01 0.01 0.01 0.01 0.05270588
|
269 |
+
0.74764706 0.99223529 0.28176471 0.01 0.01 0.01
|
270 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
271 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
272 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
273 |
+
0.01 0.01 0.01 0.01 0.14588235 0.94564706
|
274 |
+
0.88352941 0.63117647 0.42929412 0.01388235 0.01 0.01
|
275 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
276 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
277 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
278 |
+
0.01 0.01 0.01 0.32447059 0.94176471 0.99223529
|
279 |
+
0.99223529 0.472 0.10705882 0.01 0.01 0.01
|
280 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
281 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
282 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
283 |
+
0.01 0.01 0.18470588 0.73211765 0.99223529 0.99223529
|
284 |
+
0.59235294 0.11482353 0.01 0.01 0.01 0.01
|
285 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
286 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
287 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
288 |
+
0.01 0.07211765 0.37105882 0.98835294 0.99223529 0.736
|
289 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
290 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
291 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
292 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
293 |
+
0.01 0.97670588 0.99223529 0.97670588 0.25847059 0.01
|
294 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
295 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
296 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
297 |
+
0.01 0.01 0.18858824 0.51470588 0.72047059 0.99223529
|
298 |
+
0.99223529 0.81364706 0.01776471 0.01 0.01 0.01
|
299 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
300 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
301 |
+
0.01 0.01 0.01 0.01 0.16141176 0.58458824
|
302 |
+
0.89905882 0.99223529 0.99223529 0.99223529 0.98058824 0.71658824
|
303 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
304 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
305 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
306 |
+
0.10317647 0.45258824 0.868 0.99223529 0.99223529 0.99223529
|
307 |
+
0.99223529 0.79035294 0.31282353 0.01 0.01 0.01
|
308 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
309 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
310 |
+
0.01 0.01 0.09929412 0.26623529 0.83694118 0.99223529
|
311 |
+
0.99223529 0.99223529 0.99223529 0.77870588 0.32447059 0.01776471
|
312 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
313 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
314 |
+
0.01 0.01 0.01 0.01 0.07988235 0.67388235
|
315 |
+
0.86023529 0.99223529 0.99223529 0.99223529 0.99223529 0.76705882
|
316 |
+
0.32058824 0.04494118 0.01 0.01 0.01 0.01
|
317 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
318 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
319 |
+
0.22352941 0.67776471 0.88741176 0.99223529 0.99223529 0.99223529
|
320 |
+
0.99223529 0.95729412 0.52635294 0.05270588 0.01 0.01
|
321 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
322 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
323 |
+
0.01 0.01 0.01 0.01 0.538 0.99223529
|
324 |
+
0.99223529 0.99223529 0.83305882 0.53411765 0.52247059 0.07211765
|
325 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
326 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
327 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
328 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
329 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
330 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
331 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
332 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
333 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
334 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
335 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
336 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
337 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
338 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
339 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
340 |
+
0.01 0.01 0.01 0.01 0.01 0.01
|
341 |
+
0.01 0.01 0.01 0.01 ]
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
<matplotlib.image.AxesImage at 0x7fa3da408d00>
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
![png](output_10_2.png)
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
```python
|
359 |
+
targets = np.zeros(out_nodes) + 0.01
|
360 |
+
#输出层,10个数字,10个输出,0~1的概率范围
|
361 |
+
#输出层是1个list,由10个数字组成,第一个数字代表0的概率,依次类推,第10个数字代表9的概率
|
362 |
+
#这里是输出的[理想结果]
|
363 |
+
# all_values[0] is the target label for this record
|
364 |
+
#可视化中间输出
|
365 |
+
print(len(targets))
|
366 |
+
print(targets)
|
367 |
+
middle_layer_fig = np.asfarray((targets-0.01)/0.99*255.0 )
|
368 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
369 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
370 |
+
```
|
371 |
+
|
372 |
+
10
|
373 |
+
[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
<matplotlib.image.AxesImage at 0x7fa3da3ad490>
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
![png](output_11_2.png)
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
```python
|
391 |
+
#print("第1行数据:",all_values)
|
392 |
+
#print("第1行数据所表示的数字:",all_values[0])
|
393 |
+
targets[int(all_values[0])] = 0.99
|
394 |
+
#将数据集的数据表示的数字在其指定的输出层的概率位置上的概率置0.99
|
395 |
+
#这里是第1行数据,对应的是数组5,因此按照其在输出层的表示的概率位置,应当将第6个数字改为0.99
|
396 |
+
#可视化中间输出
|
397 |
+
print(targets)
|
398 |
+
middle_layer_fig = np.asfarray((targets-0.01)/0.99*255.0 )
|
399 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
400 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
401 |
+
```
|
402 |
+
|
403 |
+
[0.01 0.01 0.01 0.01 0.01 0.99 0.01 0.01 0.01 0.01]
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
<matplotlib.image.AxesImage at 0x7fa3da30b4f0>
|
410 |
+
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
|
415 |
+
![png](output_12_2.png)
|
416 |
+
|
417 |
+
|
418 |
+
|
419 |
+
|
420 |
+
```python
|
421 |
+
#对比
|
422 |
+
targets = np.zeros(out_nodes) + 0.01
|
423 |
+
print(targets)
|
424 |
+
targets[int(all_values[0])] = 0.99
|
425 |
+
print(targets)
|
426 |
+
```
|
427 |
+
|
428 |
+
[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
|
429 |
+
[0.01 0.01 0.01 0.01 0.01 0.99 0.01 0.01 0.01 0.01]
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
```python
|
434 |
+
#接下去是训练逻辑,训练的目标就是让输入的数据的概率尽可能接近理想结果
|
435 |
+
```
|
436 |
+
|
437 |
+
|
438 |
+
```python
|
439 |
+
# 将导入的输入列表数据和正确的输出结果转换成二维矩阵
|
440 |
+
INPUT = np.array(inputs, ndmin = 2).T # array函数是矩阵生成函数,将输入的inputs转换成二维矩阵,ndmin=2表示二维矩阵
|
441 |
+
TARGETS = np.array(targets, ndmin = 2).T # .T表示矩阵的转置,生成后的矩阵的转置矩阵送入变量targets
|
442 |
+
#print(INPUT)
|
443 |
+
#print(TARGETS)
|
444 |
+
```
|
445 |
+
|
446 |
+
|
447 |
+
```python
|
448 |
+
# 进行前向传播
|
449 |
+
# 利用导入的数据计算进入隐藏层的数据
|
450 |
+
hidden_inputs = np.dot(wih, INPUT) # dot()函数是指两个矩阵做点乘
|
451 |
+
#可视化中间输出
|
452 |
+
print(hidden_inputs.T)
|
453 |
+
# Visualize hidden layer activations
|
454 |
+
#hidden_inputs = hidden_inputs.reshape((20, 10))
|
455 |
+
plt.imshow(hidden_inputs.T, cmap='hot', aspect='auto')
|
456 |
+
plt.xlabel('Hidden Node')
|
457 |
+
plt.ylabel('Sample')
|
458 |
+
plt.title('Hidden Layer Activations')
|
459 |
+
plt.colorbar()
|
460 |
+
plt.show()
|
461 |
+
```
|
462 |
+
|
463 |
+
[[-8.64964137e-01 -1.96617581e+00 7.43349647e-01 6.52699592e-01
|
464 |
+
3.90933284e-01 1.23038702e+00 -1.26960367e-01 -8.89064451e-01
|
465 |
+
1.25956352e-01 -2.66009122e-01 -3.87411628e-01 -8.55340714e-01
|
466 |
+
-3.73072385e-01 -4.88004264e-01 8.93519640e-01 -5.94015812e-01
|
467 |
+
-3.94940660e-01 -6.03127644e-01 -1.83468156e-01 1.21212338e+00
|
468 |
+
1.11156836e+00 -3.30592481e-03 -1.45441494e-01 -1.16176875e-01
|
469 |
+
-6.79873194e-01 1.35716864e-03 -9.88715475e-01 2.53326180e-01
|
470 |
+
7.95912751e-02 -8.71915904e-01 -4.99039240e-01 -9.32069427e-02
|
471 |
+
-1.29952079e+00 -1.18946859e-01 -2.22242548e-01 1.07578559e+00
|
472 |
+
1.69691315e-01 -4.42288856e-01 1.18089766e+00 3.81134469e-02
|
473 |
+
3.15796540e-01 1.07374634e+00 -7.71978830e-01 -1.77028239e-01
|
474 |
+
7.83445294e-01 1.16099348e+00 5.28529106e-01 -1.94025187e-02
|
475 |
+
2.00808369e-01 6.72844377e-01 1.21480995e+00 -2.05275063e-01
|
476 |
+
-1.02432531e+00 -1.40022847e+00 7.16467553e-01 -6.38000445e-01
|
477 |
+
-1.44617295e-01 4.72539610e-01 -6.51132050e-02 -1.02462391e+00
|
478 |
+
1.38454078e+00 7.12628876e-01 7.39171671e-02 -3.34221329e-01
|
479 |
+
5.03935486e-01 2.08522402e+00 2.29977865e-01 -8.58595299e-01
|
480 |
+
9.14983758e-01 5.27664003e-02 -3.49103724e-01 -1.29338789e+00
|
481 |
+
8.10453241e-01 2.08934398e+00 1.66835420e+00 -1.12660303e+00
|
482 |
+
-1.12181011e-01 1.70474734e-01 5.20577595e-01 6.00166910e-01
|
483 |
+
-3.81956593e-01 1.30122404e-01 -5.23356991e-01 -1.01661725e+00
|
484 |
+
-3.38834016e-01 6.30692963e-01 1.17169833e-01 9.13183907e-01
|
485 |
+
-1.10728477e+00 9.91458051e-01 -2.88315338e-01 7.70893096e-01
|
486 |
+
5.82703388e-01 -9.29590575e-02 -1.26294025e+00 1.94053320e-01
|
487 |
+
-5.96912464e-01 2.60424259e-01 4.29504575e-02 -7.60243022e-01
|
488 |
+
2.03240513e-02 7.27749904e-02 -7.19974851e-01 5.25634269e-01
|
489 |
+
-4.96678397e-01 -1.62713415e+00 2.89082887e-01 -5.26173924e-01
|
490 |
+
-3.82685176e-01 -1.76410064e+00 -1.33431697e+00 4.32481392e-01
|
491 |
+
2.33941967e+00 7.52802920e-01 2.17849572e-01 -8.38437665e-02
|
492 |
+
-5.51882457e-01 1.84692442e+00 -4.10696115e-01 3.97851800e-01
|
493 |
+
-1.49071923e-01 -2.81875633e-01 1.95378425e+00 -4.66989868e-01
|
494 |
+
-4.73375650e-01 1.66522535e-01 5.01408007e-01 -1.30089311e-01
|
495 |
+
1.44543864e+00 4.28063957e-01 3.86986466e-01 6.62182100e-01
|
496 |
+
-1.39480966e-01 -1.82625599e-01 -3.67218386e-01 -1.48826110e+00
|
497 |
+
-4.31214177e-01 -8.92040712e-01 -4.15032383e-01 -3.76042786e-01
|
498 |
+
-3.83971840e-01 7.49005651e-01 -3.16839497e-01 -7.70655367e-01
|
499 |
+
3.56918546e-01 -1.93469779e-01 -4.51644191e-01 -5.20009826e-01
|
500 |
+
7.61656212e-01 -5.39819400e-01 1.24457323e-01 4.02348827e-01
|
501 |
+
4.96390519e-02 -1.61507281e-01 -6.04062425e-01 4.77674466e-01
|
502 |
+
5.65500425e-01 -1.74931564e-02 1.82237163e-01 -2.52744493e-01
|
503 |
+
-9.74909666e-01 4.39247112e-01 2.50623145e-01 -5.47588554e-01
|
504 |
+
-1.10213410e+00 -7.96484480e-03 8.18154047e-01 -5.31161336e-01
|
505 |
+
9.45395512e-02 -4.80934079e-02 -4.15248499e-01 2.01334670e-02
|
506 |
+
-7.73149020e-01 5.16150140e-01 -1.11187297e+00 -3.84973353e-01
|
507 |
+
1.57056302e-01 9.52205562e-02 -4.17473666e-04 -2.64269971e-01
|
508 |
+
3.51661057e-02 -8.62097845e-01 -6.41290441e-01 -6.10216699e-01
|
509 |
+
1.48703377e+00 -9.36182669e-01 2.29758638e-01 2.69581850e-03
|
510 |
+
-9.90544195e-03 -1.16945542e-01 2.16055208e-01 -5.16034753e-01
|
511 |
+
-5.47460522e-01 1.21898405e+00 -1.40917054e-01 -1.10955125e+00
|
512 |
+
-1.06838867e+00 -8.16027514e-01 3.18583449e-01 7.11316110e-01]]
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
![png](output_16_1.png)
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
```python
|
523 |
+
# 利用激活函数sigmoid计算隐藏层输出的数据
|
524 |
+
hidden_outputs = activation_function(hidden_inputs)
|
525 |
+
#可视化中间输出
|
526 |
+
print(hidden_outputs.T)
|
527 |
+
# Visualize hidden layer activations
|
528 |
+
plt.imshow(hidden_outputs.T, cmap='hot', aspect='auto')
|
529 |
+
plt.xlabel('Hidden Node')
|
530 |
+
plt.ylabel('Sample')
|
531 |
+
plt.title('Hidden Layer Activations')
|
532 |
+
plt.colorbar()
|
533 |
+
plt.show()
|
534 |
+
```
|
535 |
+
|
536 |
+
[[0.29630324 0.12280024 0.6777279 0.65761855 0.59650735 0.7738863
|
537 |
+
0.46830247 0.29130293 0.53144752 0.43388711 0.40434055 0.29831372
|
538 |
+
0.40779883 0.38036382 0.70961597 0.35571397 0.40252851 0.35362846
|
539 |
+
0.45426119 0.77067444 0.75242139 0.49917352 0.46370359 0.4709884
|
540 |
+
0.33628961 0.50033929 0.27116587 0.56299502 0.51988732 0.2948558
|
541 |
+
0.37776648 0.47671512 0.21424568 0.4702983 0.44466693 0.74569562
|
542 |
+
0.54232132 0.39119572 0.76510917 0.50952721 0.5782995 0.74530871
|
543 |
+
0.3160512 0.45585816 0.68642218 0.76151319 0.62913998 0.49514952
|
544 |
+
0.55003407 0.66213977 0.77114891 0.44886068 0.26418574 0.19777986
|
545 |
+
0.67182867 0.34569868 0.46390856 0.61598467 0.48372745 0.2641277
|
546 |
+
0.79971928 0.67098178 0.51847088 0.41721386 0.62338374 0.88945871
|
547 |
+
0.55724239 0.29763291 0.71401891 0.51318854 0.41359978 0.21527993
|
548 |
+
0.69220608 0.88986315 0.84135627 0.24478854 0.47198412 0.54251577
|
549 |
+
0.62728282 0.64569449 0.40565508 0.53248478 0.37206759 0.26568684
|
550 |
+
0.41609274 0.65264657 0.52925899 0.71365125 0.24837744 0.72937582
|
551 |
+
0.42841635 0.68371406 0.64168922 0.47677696 0.22046816 0.54836166
|
552 |
+
0.35505039 0.56474058 0.51073596 0.31859351 0.50508084 0.51818572
|
553 |
+
0.32739852 0.6284643 0.37832157 0.16422333 0.57177159 0.3714097
|
554 |
+
0.40547943 0.14627751 0.20844618 0.60646605 0.91208956 0.67978913
|
555 |
+
0.55424802 0.47905133 0.36542777 0.86376559 0.39874522 0.59817142
|
556 |
+
0.46280088 0.429994 0.87585869 0.38532895 0.38381758 0.5415347
|
557 |
+
0.62279016 0.46752346 0.80929544 0.60541126 0.59555704 0.6597504
|
558 |
+
0.46518618 0.45447007 0.40921333 0.18418287 0.39383643 0.29068888
|
559 |
+
0.39770607 0.40708168 0.4051693 0.678962 0.42144618 0.31633735
|
560 |
+
0.5882943 0.45178286 0.38896992 0.37284994 0.68171321 0.3682296
|
561 |
+
0.53107423 0.59925186 0.51240722 0.45971072 0.35341483 0.61719858
|
562 |
+
0.63772427 0.49562682 0.54543362 0.4371481 0.27390298 0.60807962
|
563 |
+
0.56232987 0.36642406 0.24934024 0.4980088 0.69384436 0.37024607
|
564 |
+
0.5236173 0.48797896 0.3976543 0.5050332 0.3157983 0.6262471
|
565 |
+
0.24752187 0.40492795 0.53918356 0.52378717 0.49989563 0.43431435
|
566 |
+
0.50879062 0.29690123 0.34495489 0.35200977 0.81563264 0.28167207
|
567 |
+
0.5571883 0.50067395 0.49752366 0.47079689 0.55380467 0.37377991
|
568 |
+
0.36645379 0.77188471 0.46482892 0.24795456 0.25570964 0.30660756
|
569 |
+
0.57897899 0.67069191]]
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
![png](output_17_1.png)
|
575 |
+
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
+
```python
|
580 |
+
# 利用隐藏层输出的数据计算导入输出层的数据
|
581 |
+
final_inputs = np.dot(who, hidden_outputs) # dot()函数是指两个矩阵做点乘
|
582 |
+
#可视化中间输出
|
583 |
+
print(final_inputs.T)
|
584 |
+
middle_layer_fig = np.asfarray((final_inputs-0.01)/0.99*255.0 )
|
585 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
586 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
587 |
+
```
|
588 |
+
|
589 |
+
[[ 0.56028136 0.82552015 0.34670209 0.17793798 -0.66372393 -0.37233255
|
590 |
+
-0.39555073 -0.76359914 -0.48399976 -0.23884983]]
|
591 |
+
|
592 |
+
|
593 |
+
|
594 |
+
|
595 |
+
|
596 |
+
<matplotlib.image.AxesImage at 0x7fa3d89ffc10>
|
597 |
+
|
598 |
+
|
599 |
+
|
600 |
+
|
601 |
+
|
602 |
+
![png](output_18_2.png)
|
603 |
+
|
604 |
+
|
605 |
+
|
606 |
+
|
607 |
+
```python
|
608 |
+
# Or visualize final outputs as a heatmap
|
609 |
+
plt.imshow(final_inputs, cmap='hot', aspect='auto')
|
610 |
+
plt.xlabel('Output Node')
|
611 |
+
plt.ylabel('Sample')
|
612 |
+
plt.title('Final Inputs')
|
613 |
+
plt.colorbar()
|
614 |
+
plt.show()
|
615 |
+
```
|
616 |
+
|
617 |
+
|
618 |
+
|
619 |
+
![png](output_19_0.png)
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
```python
|
625 |
+
# Visualize final layer inputs
|
626 |
+
plt.bar(range(out_nodes), final_inputs.flatten())
|
627 |
+
plt.xlabel('Output Node')
|
628 |
+
plt.ylabel('Input Value')
|
629 |
+
plt.title('Final Layer Inputs')
|
630 |
+
plt.show()
|
631 |
+
```
|
632 |
+
|
633 |
+
|
634 |
+
|
635 |
+
![png](output_20_0.png)
|
636 |
+
|
637 |
+
|
638 |
+
|
639 |
+
|
640 |
+
```python
|
641 |
+
# 利用激活函数sigmoid计算输出层的输出结果
|
642 |
+
final_outputs = activation_function(final_inputs)
|
643 |
+
# 前向传播结束
|
644 |
+
|
645 |
+
#可视化中间输出
|
646 |
+
print(final_outputs.T)
|
647 |
+
middle_layer_fig = np.asfarray((final_outputs-0.01)/0.99*255.0 )
|
648 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
649 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
650 |
+
```
|
651 |
+
|
652 |
+
[[0.63651764 0.69540686 0.58581762 0.54436749 0.33990358 0.40797752
|
653 |
+
0.40238179 0.31786536 0.38130809 0.44056981]]
|
654 |
+
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
<matplotlib.image.AxesImage at 0x7fa3da5f10a0>
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
|
664 |
+
|
665 |
+
![png](output_21_2.png)
|
666 |
+
|
667 |
+
|
668 |
+
|
669 |
+
|
670 |
+
```python
|
671 |
+
# Or visualize final outputs as a heatmap
|
672 |
+
plt.imshow(final_outputs, cmap='hot', aspect='auto')
|
673 |
+
plt.xlabel('Output Node')
|
674 |
+
plt.ylabel('Sample')
|
675 |
+
plt.title('Final Outputs')
|
676 |
+
plt.colorbar()
|
677 |
+
plt.show()
|
678 |
+
```
|
679 |
+
|
680 |
+
|
681 |
+
|
682 |
+
![png](output_22_0.png)
|
683 |
+
|
684 |
+
|
685 |
+
|
686 |
+
|
687 |
+
```python
|
688 |
+
# Visualize final layer outputs (sigmoid)
|
689 |
+
plt.bar(range(out_nodes), final_outputs.flatten())
|
690 |
+
plt.xlabel('Output Node')
|
691 |
+
plt.ylabel('Input Value')
|
692 |
+
plt.title('Final Layer Inputs')
|
693 |
+
plt.show()
|
694 |
+
```
|
695 |
+
|
696 |
+
|
697 |
+
|
698 |
+
![png](output_23_0.png)
|
699 |
+
|
700 |
+
|
701 |
+
|
702 |
+
|
703 |
+
```python
|
704 |
+
# 进行反向传播
|
705 |
+
# 计算前向传播得到的输出结果与正确值之间的误差
|
706 |
+
output_errors = TARGETS - final_outputs
|
707 |
+
|
708 |
+
#可视化中间输出
|
709 |
+
print(output_errors.T)
|
710 |
+
middle_layer_fig = np.asfarray((output_errors-0.01)/0.99*255.0 )
|
711 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
712 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
713 |
+
```
|
714 |
+
|
715 |
+
[[-0.62651764 -0.68540686 -0.57581762 -0.53436749 -0.32990358 0.58202248
|
716 |
+
-0.39238179 -0.30786536 -0.37130809 -0.43056981]]
|
717 |
+
|
718 |
+
|
719 |
+
|
720 |
+
|
721 |
+
|
722 |
+
<matplotlib.image.AxesImage at 0x7fa3d87db8b0>
|
723 |
+
|
724 |
+
|
725 |
+
|
726 |
+
|
727 |
+
|
728 |
+
![png](output_24_2.png)
|
729 |
+
|
730 |
+
|
731 |
+
|
732 |
+
|
733 |
+
```python
|
734 |
+
# Visualize output errors as a bar chart
|
735 |
+
plt.bar(range(out_nodes), output_errors.flatten())
|
736 |
+
plt.xlabel('Output Node')
|
737 |
+
plt.ylabel('Error Value')
|
738 |
+
plt.title('Output Errors')
|
739 |
+
plt.show()
|
740 |
+
```
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
![png](output_25_0.png)
|
745 |
+
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
```python
|
750 |
+
# Or visualize output errors as a scatter plot
|
751 |
+
plt.scatter(range(out_nodes), output_errors.flatten())
|
752 |
+
plt.xlabel('Output Node')
|
753 |
+
plt.ylabel('Error Value')
|
754 |
+
plt.title('Output Errors')
|
755 |
+
plt.show()
|
756 |
+
```
|
757 |
+
|
758 |
+
|
759 |
+
|
760 |
+
![png](output_26_0.png)
|
761 |
+
|
762 |
+
|
763 |
+
|
764 |
+
|
765 |
+
```python
|
766 |
+
# 隐藏层的误差是由输出层的误差通过两个层之间的权重矩阵进行分配的,在隐藏层重新结合
|
767 |
+
```
|
768 |
+
|
769 |
+
|
770 |
+
```python
|
771 |
+
hidden_errors = np.dot(who.T, output_errors) # 隐藏层与输出层之间的权重矩阵的转置与前向传播的误差矩阵的点乘
|
772 |
+
#可视化中间输出
|
773 |
+
print(hidden_errors.T)
|
774 |
+
#middle_layer_fig = np.asfarray((hidden_errors-0.01)/0.99*255.0 )
|
775 |
+
#middle_layer_fig = np.asfarray(middle_layer_fig).reshape((20,10))
|
776 |
+
#plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
777 |
+
```
|
778 |
+
|
779 |
+
[[ 0.23145703 -0.09199276 -0.12220719 -0.15896069 0.06424253 0.10197068
|
780 |
+
-0.23125848 -0.00782811 -0.08381227 -0.11514534 -0.09644854 -0.12429981
|
781 |
+
0.11276763 -0.26363747 -0.00989155 -0.14107911 0.27482566 0.10077863
|
782 |
+
0.08727872 -0.12703169 0.04482464 0.07979755 -0.08780178 -0.10513761
|
783 |
+
-0.00644824 -0.11657829 -0.04453468 0.05577635 0.01531368 0.13738715
|
784 |
+
0.03474212 0.22550981 -0.08763767 -0.06505764 -0.11262462 -0.04158586
|
785 |
+
-0.09128322 -0.01086248 0.05525096 -0.12434499 0.17656152 0.04339815
|
786 |
+
-0.03433653 -0.11152836 0.03669448 -0.01467246 0.01413861 0.17155288
|
787 |
+
-0.12223192 -0.10968683 0.10515451 0.14353315 0.08262463 0.16657906
|
788 |
+
-0.10807233 -0.10796653 -0.01689826 0.05175527 -0.02711501 -0.06925127
|
789 |
+
0.24918363 -0.0658346 -0.01650576 -0.14181141 -0.06328054 0.11752269
|
790 |
+
0.07361948 -0.25658514 -0.03837734 0.05291595 0.18022871 -0.02485894
|
791 |
+
-0.11155773 -0.17969543 0.05235072 -0.03868002 0.07991305 -0.00944794
|
792 |
+
0.01358124 -0.04854606 -0.11433062 -0.11457118 -0.10174756 0.08157923
|
793 |
+
-0.07922054 0.16252699 -0.0668835 0.02633577 -0.25292949 -0.00164063
|
794 |
+
0.17719827 -0.27838094 0.06372956 -0.08327759 -0.1045452 0.0994223
|
795 |
+
-0.18854096 0.01717639 -0.22337965 -0.05331426 -0.09068925 0.00909319
|
796 |
+
-0.11275048 0.02400681 0.15580461 0.04395622 0.05191163 0.07671998
|
797 |
+
-0.07357827 0.04857611 0.01200461 -0.01824155 0.20218933 -0.01648541
|
798 |
+
-0.08841815 -0.22972757 -0.06564815 0.25879827 0.03363929 -0.08144042
|
799 |
+
-0.00117747 0.04931258 -0.28733007 0.09207885 -0.11084745 0.03480787
|
800 |
+
-0.30290225 0.02605289 -0.03273764 0.13374028 0.06733113 -0.08264645
|
801 |
+
-0.10579 -0.16626817 -0.19349467 0.2339928 0.25338442 -0.04781617
|
802 |
+
0.01431193 -0.06614716 -0.03706169 -0.18027598 0.03546684 0.07375848
|
803 |
+
-0.13524866 -0.14490857 -0.21459248 0.1796899 0.02376605 -0.02517879
|
804 |
+
0.00632407 0.03003414 -0.11537092 0.03510202 0.07357026 0.0971219
|
805 |
+
-0.08266574 0.03720117 0.09910707 -0.04312925 -0.08307132 0.02983252
|
806 |
+
0.01496464 0.07249455 -0.1618727 0.11377448 -0.03207163 0.19216192
|
807 |
+
0.09118743 0.01690548 -0.06923089 0.02959015 0.20129512 -0.04899694
|
808 |
+
0.1233579 -0.20508642 0.01812198 -0.00063595 0.17360329 0.11723159
|
809 |
+
0.15777609 0.07835488 -0.05387801 -0.01755501 0.10815374 0.22098465
|
810 |
+
-0.12040005 0.025853 -0.08475004 0.24887947 0.07332807 0.0784619
|
811 |
+
0.01351764 -0.08704183 0.08712977 0.0756019 -0.04051772 -0.15931343
|
812 |
+
-0.04228901 0.13588616]]
|
813 |
+
|
814 |
+
|
815 |
+
|
816 |
+
```python
|
817 |
+
# Visualize hidden errors as a bar chart
|
818 |
+
plt.bar(range(hide_nodes), hidden_errors.flatten())
|
819 |
+
plt.xlabel('Hidden Node')
|
820 |
+
plt.ylabel('Error Value')
|
821 |
+
plt.title('Hidden Errors')
|
822 |
+
plt.show()
|
823 |
+
```
|
824 |
+
|
825 |
+
|
826 |
+
|
827 |
+
![png](output_29_0.png)
|
828 |
+
|
829 |
+
|
830 |
+
|
831 |
+
|
832 |
+
```python
|
833 |
+
# Or visualize hidden errors as a scatter plot
|
834 |
+
plt.scatter(range(hide_nodes), hidden_errors.flatten())
|
835 |
+
plt.xlabel('Hidden Node')
|
836 |
+
plt.ylabel('Error Value')
|
837 |
+
plt.title('Hidden Errors')
|
838 |
+
plt.show()
|
839 |
+
```
|
840 |
+
|
841 |
+
|
842 |
+
|
843 |
+
![png](output_30_0.png)
|
844 |
+
|
845 |
+
|
846 |
+
|
847 |
+
|
848 |
+
```python
|
849 |
+
# 对隐藏层与输出层之间的权重矩阵进行更新迭代
|
850 |
+
who += learningrate * np.dot((output_errors * final_outputs * (1.0 - final_outputs)),np.transpose(hidden_outputs))
|
851 |
+
# 对输入层与隐藏层之间的权重矩阵进行更新迭代
|
852 |
+
wih += learningrate * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(INPUT))
|
853 |
+
```
|
854 |
+
|
855 |
+
|
856 |
+
```python
|
857 |
+
#第一次迭代训练结束
|
858 |
+
print(wih)
|
859 |
+
print(who)
|
860 |
+
```
|
861 |
+
|
862 |
+
[[ 0.02067233 -0.07978803 0.03108053 ... -0.03073812 0.0557655
|
863 |
+
-0.05129495]
|
864 |
+
[ 0.07106607 0.08339657 -0.09380426 ... 0.0441884 -0.03837313
|
865 |
+
-0.08557481]
|
866 |
+
[ 0.05502248 -0.09130093 0.0384007 ... -0.00538593 0.06249898
|
867 |
+
0.08624116]
|
868 |
+
...
|
869 |
+
[-0.00994263 -0.07816935 -0.01082394 ... 0.00301429 -0.00230436
|
870 |
+
0.09999818]
|
871 |
+
[ 0.03612263 -0.01946694 0.0954403 ... 0.01146139 -0.00025476
|
872 |
+
-0.12006706]
|
873 |
+
[-0.05983042 -0.01998364 -0.06092712 ... -0.02392167 -0.06806361
|
874 |
+
0.01094472]]
|
875 |
+
[[-0.0204511 -0.07749507 -0.00194097 ... 0.09540347 0.008829
|
876 |
+
-0.02140005]
|
877 |
+
[-0.01264093 0.06889351 0.04956639 ... -0.0669025 -0.01843888
|
878 |
+
0.00722866]
|
879 |
+
[-0.05481193 0.04000967 -0.09688887 ... 0.07287872 0.11162873
|
880 |
+
-0.12241058]
|
881 |
+
...
|
882 |
+
[-0.0972931 0.05829893 0.13900051 ... 0.04472318 0.0444388
|
883 |
+
-0.1383636 ]
|
884 |
+
[ 0.0109094 0.01127165 0.00850074 ... 0.00947806 -0.08093348
|
885 |
+
-0.17257885]
|
886 |
+
[-0.08861324 0.04998882 0.03560659 ... 0.05427103 -0.06461784
|
887 |
+
0.01395731]]
|
888 |
+
|
889 |
+
|
890 |
+
|
891 |
+
```python
|
892 |
+
print(wih)
|
893 |
+
# Visualize weight matrix wih
|
894 |
+
plt.imshow(wih, cmap='coolwarm', aspect='auto')
|
895 |
+
plt.xlabel('Output Node')
|
896 |
+
plt.ylabel('Hidden Node')
|
897 |
+
plt.title('Weight Matrix (Hidden to input)')
|
898 |
+
plt.colorbar()
|
899 |
+
plt.show()
|
900 |
+
```
|
901 |
+
|
902 |
+
[[ 0.02067233 -0.07978803 0.03108053 ... -0.03073812 0.0557655
|
903 |
+
-0.05129495]
|
904 |
+
[ 0.07106607 0.08339657 -0.09380426 ... 0.0441884 -0.03837313
|
905 |
+
-0.08557481]
|
906 |
+
[ 0.05502248 -0.09130093 0.0384007 ... -0.00538593 0.06249898
|
907 |
+
0.08624116]
|
908 |
+
...
|
909 |
+
[-0.00994263 -0.07816935 -0.01082394 ... 0.00301429 -0.00230436
|
910 |
+
0.09999818]
|
911 |
+
[ 0.03612263 -0.01946694 0.0954403 ... 0.01146139 -0.00025476
|
912 |
+
-0.12006706]
|
913 |
+
[-0.05983042 -0.01998364 -0.06092712 ... -0.02392167 -0.06806361
|
914 |
+
0.01094472]]
|
915 |
+
|
916 |
+
|
917 |
+
|
918 |
+
|
919 |
+
![png](output_33_1.png)
|
920 |
+
|
921 |
+
|
922 |
+
|
923 |
+
|
924 |
+
```python
|
925 |
+
print(who)
|
926 |
+
# Visualize weight matrix who
|
927 |
+
plt.imshow(who, cmap='coolwarm', aspect='auto')
|
928 |
+
plt.xlabel('Output Node')
|
929 |
+
plt.ylabel('Hidden Node')
|
930 |
+
plt.title('Weight Matrix (Hidden to Output)')
|
931 |
+
plt.colorbar()
|
932 |
+
plt.show()
|
933 |
+
```
|
934 |
+
|
935 |
+
[[-0.0204511 -0.07749507 -0.00194097 ... 0.09540347 0.008829
|
936 |
+
-0.02140005]
|
937 |
+
[-0.01264093 0.06889351 0.04956639 ... -0.0669025 -0.01843888
|
938 |
+
0.00722866]
|
939 |
+
[-0.05481193 0.04000967 -0.09688887 ... 0.07287872 0.11162873
|
940 |
+
-0.12241058]
|
941 |
+
...
|
942 |
+
[-0.0972931 0.05829893 0.13900051 ... 0.04472318 0.0444388
|
943 |
+
-0.1383636 ]
|
944 |
+
[ 0.0109094 0.01127165 0.00850074 ... 0.00947806 -0.08093348
|
945 |
+
-0.17257885]
|
946 |
+
[-0.08861324 0.04998882 0.03560659 ... 0.05427103 -0.06461784
|
947 |
+
0.01395731]]
|
948 |
+
|
949 |
+
|
950 |
+
|
951 |
+
|
952 |
+
![png](output_34_1.png)
|
953 |
+
|
954 |
+
|
955 |
+
|
956 |
+
|
957 |
+
```python
|
958 |
+
#完整训练流程
|
959 |
+
```
|
960 |
+
|
961 |
+
|
962 |
+
```python
|
963 |
+
input_nodes=784 # 输入层节点数
|
964 |
+
hide_nodes=200 # 隐藏层节点数
|
965 |
+
out_nodes=10 # 输出层节点数
|
966 |
+
learningrate = 0.1 #学习率
|
967 |
+
train_errors = []
|
968 |
+
epochs=5
|
969 |
+
|
970 |
+
wih = np.random.normal(0.0, pow(hide_nodes, -0.5), (hide_nodes, input_nodes)) #矩阵大小为隐藏层节点数×输入层节点数
|
971 |
+
#np.random.normal()的意思是一个正态分布,normal这里是正态的意思
|
972 |
+
who = np.random.normal(0.0, pow(hide_nodes, -0.5), (out_nodes, hide_nodes)) #矩阵大小为输出层节点数×隐藏层节点数
|
973 |
+
activation_function = lambda x: ssp.expit(x) #结合上述所学,这里写一段原理是logistic sigmoid的激活函数
|
974 |
+
|
975 |
+
test_data_file = open("mnist_train.csv", 'r')
|
976 |
+
test_data_list = test_data_file.readlines()
|
977 |
+
test_data_file.close()
|
978 |
+
|
979 |
+
for e in range(epochs):
|
980 |
+
# go through all records in the training data set
|
981 |
+
# 遍历所有输入的数据
|
982 |
+
print('epochs start:',e)
|
983 |
+
# 计算训练集上的误差
|
984 |
+
train_error = 0.0
|
985 |
+
for record in test_data_list:
|
986 |
+
all_values = record.split(',') # split()函数将第1条数据进行拆分,以‘,’为分界点进行拆分
|
987 |
+
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 #输入层,784个输入
|
988 |
+
targets = np.zeros(out_nodes) + 0.01
|
989 |
+
targets[int(all_values[0])] = 0.99
|
990 |
+
INPUT = np.array(inputs, ndmin = 2).T # array函数是矩阵生成函数,将输入的inputs转换成二维矩阵,ndmin=2表示二维矩阵
|
991 |
+
TARGETS = np.array(targets, ndmin = 2).T # .T表示矩阵的转置,生成后的矩阵的转置矩阵送入变量targets
|
992 |
+
# 进行前向传播
|
993 |
+
# 利用导入的数据计算进入隐藏层的数据
|
994 |
+
hidden_inputs = np.dot(wih, INPUT) # dot()函数是指两个矩阵做点乘
|
995 |
+
# 利用激活函数sigmoid计算隐藏层输出的数据
|
996 |
+
hidden_outputs = activation_function(hidden_inputs)
|
997 |
+
# 利用隐藏层输出的数据计算导入输出层的数据
|
998 |
+
final_inputs = np.dot(who, hidden_outputs) # dot()函数是指两个矩阵做点乘
|
999 |
+
# 利用激活函数sigmoid计算输出层的输出结果
|
1000 |
+
final_outputs = activation_function(final_inputs)
|
1001 |
+
# 前向传播结束
|
1002 |
+
# 进行反向传播
|
1003 |
+
# 计算前向传播得到的输出结果与正确值之间的误差
|
1004 |
+
output_errors = TARGETS - final_outputs
|
1005 |
+
# 隐藏层的误差是由输出层的误差通过两个层之间的权重矩阵进行分配的,在隐藏层重新结合
|
1006 |
+
hidden_errors = np.dot(who.T, output_errors) # 隐藏层与输出层之间的权重矩阵的转置与前向传播的误差矩阵的点乘
|
1007 |
+
# 对隐藏层与输出层之间的权重矩阵进行更新迭代
|
1008 |
+
who += learningrate * np.dot((output_errors * final_outputs * (1.0 - final_outputs)),np.transpose(hidden_outputs))
|
1009 |
+
# 对输入层与隐藏层之间的权重矩阵进行更新迭代
|
1010 |
+
wih += learningrate * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(INPUT))
|
1011 |
+
train_error += np.sum((output_errors) ** 2)
|
1012 |
+
train_error /= len(test_data_list)
|
1013 |
+
train_errors.append(train_error)
|
1014 |
+
|
1015 |
+
# 画出误差曲线
|
1016 |
+
plt.plot(train_errors, label='training error')
|
1017 |
+
plt.legend()
|
1018 |
+
plt.show()
|
1019 |
+
```
|
1020 |
+
|
1021 |
+
epochs start: 0
|
1022 |
+
epochs start: 1
|
1023 |
+
epochs start: 2
|
1024 |
+
epochs start: 3
|
1025 |
+
epochs start: 4
|
1026 |
+
|
1027 |
+
|
1028 |
+
|
1029 |
+
|
1030 |
+
![png](output_36_1.png)
|
1031 |
+
|
1032 |
+
|
1033 |
+
|
1034 |
+
|
1035 |
+
```python
|
1036 |
+
#最终结果,这两个变量就是最终的权重(weights)
|
1037 |
+
print(who)
|
1038 |
+
print(wih)
|
1039 |
+
final_who=who
|
1040 |
+
final_wih=wih
|
1041 |
+
```
|
1042 |
+
|
1043 |
+
[[-1.16611326 -0.4525141 -0.06610833 ... -0.45357449 -0.48939251
|
1044 |
+
0.64537313]
|
1045 |
+
[-0.23350166 -0.07640343 -0.33892076 ... -0.42012762 -0.09425477
|
1046 |
+
-0.35624211]
|
1047 |
+
[ 0.02538154 -0.36034837 -0.31796842 ... -0.03179198 0.24630403
|
1048 |
+
0.53641215]
|
1049 |
+
...
|
1050 |
+
[-0.62273744 1.44743377 0.37902492 ... -1.22510993 0.85708252
|
1051 |
+
-0.0379783 ]
|
1052 |
+
[-0.30649461 -0.45335212 -0.75158325 ... 0.27636151 -0.47017666
|
1053 |
+
-0.43715161]
|
1054 |
+
[ 0.01993143 -1.11644346 1.10811109 ... 0.39435807 -0.77164373
|
1055 |
+
-0.37836149]]
|
1056 |
+
[[ 0.01027389 -0.06948278 -0.13336783 ... 0.0431249 0.0116984
|
1057 |
+
0.01118535]
|
1058 |
+
[ 0.04093141 0.13349408 0.0447183 ... -0.02876729 -0.08677845
|
1059 |
+
-0.05826928]
|
1060 |
+
[-0.11370514 -0.04104104 0.05438874 ... -0.00457712 -0.01669163
|
1061 |
+
-0.02552346]
|
1062 |
+
...
|
1063 |
+
[-0.00480138 0.04369124 -0.07553194 ... 0.09218518 0.02003152
|
1064 |
+
0.0808828 ]
|
1065 |
+
[-0.00826098 0.07729079 -0.12576362 ... 0.03445958 0.02413203
|
1066 |
+
-0.08935369]
|
1067 |
+
[-0.03758297 -0.06222281 0.02554687 ... 0.13169544 0.01547494
|
1068 |
+
-0.07650541]]
|
1069 |
+
|
1070 |
+
|
1071 |
+
|
1072 |
+
```python
|
1073 |
+
#保存权重
|
1074 |
+
np.save("weights", final_who)
|
1075 |
+
np.save("weights02",final_wih)
|
1076 |
+
```
|
1077 |
+
|
1078 |
+
|
1079 |
+
```python
|
1080 |
+
#测试
|
1081 |
+
```
|
1082 |
+
|
1083 |
+
|
1084 |
+
```python
|
1085 |
+
#加载权重文件(weights)
|
1086 |
+
final_who=np.load("weights.npy")
|
1087 |
+
final_wih=np.load("weights02.npy")
|
1088 |
+
```
|
1089 |
+
|
1090 |
+
|
1091 |
+
```python
|
1092 |
+
# Visualize weight matrix wih
|
1093 |
+
plt.imshow(final_wih, cmap='coolwarm', aspect='auto')
|
1094 |
+
plt.xlabel('Output Node')
|
1095 |
+
plt.ylabel('Hidden Node')
|
1096 |
+
plt.title('Weight Matrix (Hidden to input)')
|
1097 |
+
plt.colorbar()
|
1098 |
+
plt.show()
|
1099 |
+
```
|
1100 |
+
|
1101 |
+
|
1102 |
+
|
1103 |
+
![png](output_41_0.png)
|
1104 |
+
|
1105 |
+
|
1106 |
+
|
1107 |
+
|
1108 |
+
```python
|
1109 |
+
# Visualize weight matrix who
|
1110 |
+
plt.imshow(final_who, cmap='coolwarm', aspect='auto')
|
1111 |
+
plt.xlabel('Output Node')
|
1112 |
+
plt.ylabel('Hidden Node')
|
1113 |
+
plt.title('Weight Matrix (Hidden to output)')
|
1114 |
+
plt.colorbar()
|
1115 |
+
plt.show()
|
1116 |
+
```
|
1117 |
+
|
1118 |
+
|
1119 |
+
|
1120 |
+
![png](output_42_0.png)
|
1121 |
+
|
1122 |
+
|
1123 |
+
|
1124 |
+
|
1125 |
+
```python
|
1126 |
+
test_data_file = open("mnist_test.csv", 'r')
|
1127 |
+
test_data_list = test_data_file.readlines()
|
1128 |
+
test_data_file.close()
|
1129 |
+
```
|
1130 |
+
|
1131 |
+
|
1132 |
+
```python
|
1133 |
+
data_serial_num=455
|
1134 |
+
all_values = test_data_list[data_serial_num].split(',') # split()函数将第1条数据进行拆分,以‘,’为分界点进行拆分
|
1135 |
+
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
|
1136 |
+
#print(inputs)
|
1137 |
+
image_array = np.asfarray(all_values[1:]).reshape((28,28)) # asfarray()函数将all_values中的后784个数字进行重新排列
|
1138 |
+
# reshape()函数可以对数组进行整型,使其成为28×28的二维数组,asfarry()函数可以使其成为矩阵。
|
1139 |
+
plt.imshow(image_array, interpolation = 'nearest') # imshow()函数可以将28×28的矩阵中的数值当做像素值,使其形成图片
|
1140 |
+
```
|
1141 |
+
|
1142 |
+
|
1143 |
+
|
1144 |
+
|
1145 |
+
<matplotlib.image.AxesImage at 0x7fa3d809b2e0>
|
1146 |
+
|
1147 |
+
|
1148 |
+
|
1149 |
+
|
1150 |
+
|
1151 |
+
![png](output_44_1.png)
|
1152 |
+
|
1153 |
+
|
1154 |
+
|
1155 |
+
|
1156 |
+
```python
|
1157 |
+
test_inputs = np.array(inputs, ndmin = 2).T
|
1158 |
+
# 以下程序为计算输出结果的程序,与上面前向传播算法一致
|
1159 |
+
hidden_inputs = np.dot(final_wih, test_inputs)
|
1160 |
+
hidden_outputs = activation_function(hidden_inputs)
|
1161 |
+
final_inputs = np.dot(final_who, hidden_outputs)
|
1162 |
+
final_outputs = activation_function(final_inputs)
|
1163 |
+
print(final_outputs)
|
1164 |
+
```
|
1165 |
+
|
1166 |
+
[[0.01072488]
|
1167 |
+
[0.99333831]
|
1168 |
+
[0.00781424]
|
1169 |
+
[0.00584866]
|
1170 |
+
[0.02362064]
|
1171 |
+
[0.01216366]
|
1172 |
+
[0.00683059]
|
1173 |
+
[0.00921785]
|
1174 |
+
[0.00169813]
|
1175 |
+
[0.00730339]]
|
1176 |
+
|
1177 |
+
|
1178 |
+
|
1179 |
+
```python
|
1180 |
+
# Visualize hidden layer activations
|
1181 |
+
#hidden_inputs = hidden_inputs.reshape((20, 10))
|
1182 |
+
plt.imshow(hidden_inputs.T, cmap='hot', aspect='auto')
|
1183 |
+
plt.xlabel('Hidden Node')
|
1184 |
+
plt.ylabel('Sample')
|
1185 |
+
plt.title('Hidden Layer Activations')
|
1186 |
+
plt.colorbar()
|
1187 |
+
plt.show()
|
1188 |
+
```
|
1189 |
+
|
1190 |
+
|
1191 |
+
|
1192 |
+
![png](output_46_0.png)
|
1193 |
+
|
1194 |
+
|
1195 |
+
|
1196 |
+
|
1197 |
+
```python
|
1198 |
+
# Visualize hidden layer activations
|
1199 |
+
plt.imshow(hidden_outputs.T, cmap='hot', aspect='auto')
|
1200 |
+
plt.xlabel('Hidden Node')
|
1201 |
+
plt.ylabel('Sample')
|
1202 |
+
plt.title('Hidden Layer Activations')
|
1203 |
+
plt.colorbar()
|
1204 |
+
plt.show()
|
1205 |
+
```
|
1206 |
+
|
1207 |
+
|
1208 |
+
|
1209 |
+
![png](output_47_0.png)
|
1210 |
+
|
1211 |
+
|
1212 |
+
|
1213 |
+
|
1214 |
+
```python
|
1215 |
+
#可视化中间输出
|
1216 |
+
print(final_inputs.T)
|
1217 |
+
middle_layer_fig = np.asfarray((final_inputs-0.01)/0.99*255.0 )
|
1218 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
1219 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
1220 |
+
```
|
1221 |
+
|
1222 |
+
[[-4.52440665 5.00469803 -4.84396237 -5.13567656 -3.72173031 -4.39706459
|
1223 |
+
-4.97949043 -4.67735268 -6.37652596 -4.91208681]]
|
1224 |
+
|
1225 |
+
|
1226 |
+
|
1227 |
+
|
1228 |
+
|
1229 |
+
<matplotlib.image.AxesImage at 0x7fa3cbe083a0>
|
1230 |
+
|
1231 |
+
|
1232 |
+
|
1233 |
+
|
1234 |
+
|
1235 |
+
![png](output_48_2.png)
|
1236 |
+
|
1237 |
+
|
1238 |
+
|
1239 |
+
|
1240 |
+
```python
|
1241 |
+
# Or visualize final outputs as a heatmap
|
1242 |
+
plt.imshow(final_inputs, cmap='hot', aspect='auto')
|
1243 |
+
plt.xlabel('Input Node')
|
1244 |
+
plt.ylabel('Sample')
|
1245 |
+
plt.title('Final Inputs')
|
1246 |
+
plt.colorbar()
|
1247 |
+
plt.show()
|
1248 |
+
```
|
1249 |
+
|
1250 |
+
|
1251 |
+
|
1252 |
+
![png](output_49_0.png)
|
1253 |
+
|
1254 |
+
|
1255 |
+
|
1256 |
+
|
1257 |
+
```python
|
1258 |
+
# Visualize final layer inputs
|
1259 |
+
plt.bar(range(out_nodes), final_inputs.flatten())
|
1260 |
+
plt.xlabel('Output Node')
|
1261 |
+
plt.ylabel('Input Value')
|
1262 |
+
plt.title('Final Layer Inputs')
|
1263 |
+
plt.show()
|
1264 |
+
```
|
1265 |
+
|
1266 |
+
|
1267 |
+
|
1268 |
+
![png](output_50_0.png)
|
1269 |
+
|
1270 |
+
|
1271 |
+
|
1272 |
+
|
1273 |
+
```python
|
1274 |
+
#可视化中间输出
|
1275 |
+
print(final_outputs.T)
|
1276 |
+
middle_layer_fig = np.asfarray((final_outputs-0.01)/0.99*255.0 )
|
1277 |
+
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
|
1278 |
+
plt.imshow(middle_layer_fig, interpolation = 'nearest')
|
1279 |
+
```
|
1280 |
+
|
1281 |
+
[[0.01072488 0.99333831 0.00781424 0.00584866 0.02362064 0.01216366
|
1282 |
+
0.00683059 0.00921785 0.00169813 0.00730339]]
|
1283 |
+
|
1284 |
+
|
1285 |
+
|
1286 |
+
|
1287 |
+
|
1288 |
+
<matplotlib.image.AxesImage at 0x7fa3cbcba550>
|
1289 |
+
|
1290 |
+
|
1291 |
+
|
1292 |
+
|
1293 |
+
|
1294 |
+
![png](output_51_2.png)
|
1295 |
+
|
1296 |
+
|
1297 |
+
|
1298 |
+
|
1299 |
+
```python
|
1300 |
+
# Or visualize final outputs as a heatmap
|
1301 |
+
plt.imshow(final_outputs, cmap='hot', aspect='auto')
|
1302 |
+
plt.xlabel('Output Node')
|
1303 |
+
plt.ylabel('Sample')
|
1304 |
+
plt.title('Final Outputs')
|
1305 |
+
plt.colorbar()
|
1306 |
+
plt.show()
|
1307 |
+
```
|
1308 |
+
|
1309 |
+
|
1310 |
+
|
1311 |
+
![png](output_52_0.png)
|
1312 |
+
|
1313 |
+
|
1314 |
+
|
1315 |
+
|
1316 |
+
```python
|
1317 |
+
# Visualize final layer outputs (sigmoid)
|
1318 |
+
plt.bar(range(out_nodes), final_outputs.flatten())
|
1319 |
+
plt.xlabel('Output Node')
|
1320 |
+
plt.ylabel('Input Value')
|
1321 |
+
plt.title('Final Layer Outputs')
|
1322 |
+
plt.show()
|
1323 |
+
```
|
1324 |
+
|
1325 |
+
|
1326 |
+
|
1327 |
+
![png](output_53_0.png)
|
1328 |
+
|
1329 |
+
|
1330 |
+
|
1331 |
+
|
1332 |
+
```python
|
1333 |
+
lebal = np.argmax(final_outputs)
|
1334 |
+
print(lebal)
|
1335 |
+
```
|
1336 |
+
|
1337 |
+
1
|
1338 |
+
|
1339 |
+
|
1340 |
+
|
1341 |
+
```python
|
1342 |
+
#模型效果和性能测试
|
1343 |
+
```
|
1344 |
+
|
1345 |
+
|
1346 |
+
```python
|
1347 |
+
# load the mnist test data CSV file into a list
|
1348 |
+
# 导入测试集数据
|
1349 |
+
test_data_file = open("mnist_test.csv", 'r')
|
1350 |
+
test_data_list = test_data_file.readlines()
|
1351 |
+
test_data_file.close()
|
1352 |
+
# test the neural network
|
1353 |
+
# 用query函数对测试集进行检测
|
1354 |
+
# go through all the records in the test data set for record in the test_data_list:
|
1355 |
+
scorecard = 0 # 得分卡,检测对一个加一分
|
1356 |
+
# 计算测试集上的误差
|
1357 |
+
|
1358 |
+
for record in test_data_list:
|
1359 |
+
# split the record by the ',' comas
|
1360 |
+
# 将所有测试数据通过逗号分隔开
|
1361 |
+
all_values = record.split(',')
|
1362 |
+
# correct answer is first value
|
1363 |
+
# 正确值为每一条测试数据的第一个数值
|
1364 |
+
correct_lebal = int(all_values[0])
|
1365 |
+
#print("correct lebal", correct_lebal) # 将正确的数值在屏幕上打印出来
|
1366 |
+
# scale and shift the inputs
|
1367 |
+
# 对输入数据进行处理,取后784个数据除以255,再乘以0.99,最后加上0。01,是所有的数据都在0.01到1.00之间
|
1368 |
+
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 #输入层,784个输入
|
1369 |
+
|
1370 |
+
# query the network
|
1371 |
+
# 用query函数对测试集进行检测
|
1372 |
+
|
1373 |
+
test_inputs = np.array(inputs, ndmin = 2).T
|
1374 |
+
# 以下程序为计算输出结果的程序,与上面前向传播算法一致
|
1375 |
+
hidden_inputs = np.dot(final_wih, test_inputs)
|
1376 |
+
hidden_outputs = activation_function(hidden_inputs)
|
1377 |
+
final_inputs = np.dot(final_who, hidden_outputs)
|
1378 |
+
final_outputs = activation_function(final_inputs)
|
1379 |
+
|
1380 |
+
# the index of the highest value corresponds to out label
|
1381 |
+
# 得到的数字就是输出结果的最大的数值所对应的标签
|
1382 |
+
lebal = np.argmax(final_outputs) # argmax()函数用于找出数值最大的值所对应的标签
|
1383 |
+
#print("Output is ", lebal) # 在屏幕上打出最终输出的结果
|
1384 |
+
# output image of every digit
|
1385 |
+
# 输出每一个数字的图片
|
1386 |
+
#image_correct = np.asfarray(all_values[1:]).reshape((28, 28))
|
1387 |
+
#plt.imshow(image_correct, cmap = 'Greys', interpolation = 'None')
|
1388 |
+
#plt.show()
|
1389 |
+
# append correct or incorrect to list
|
1390 |
+
if (lebal == correct_lebal):
|
1391 |
+
# network's answer matchs correct answer, add 1 to scorecard
|
1392 |
+
scorecard += 1
|
1393 |
+
else:
|
1394 |
+
# network's answer doesn't match correct answer, add 0 to scorecard
|
1395 |
+
scorecard += 0
|
1396 |
+
pass
|
1397 |
+
pass
|
1398 |
+
|
1399 |
+
# calculate the performance score, the fraction
|
1400 |
+
# 计算准确率 得分卡最后的数值/10000(测试集总个数)
|
1401 |
+
print("performance = ", scorecard / 10000)
|
1402 |
+
|
1403 |
+
```
|
1404 |
+
|
1405 |
+
performance = 0.9722
|
1406 |
+
|
1407 |
+
|
1408 |
+
|
1409 |
+
```python
|
1410 |
+
|
1411 |
+
```
|