File size: 1,431 Bytes
014188d b4c700c 014188d b4c700c 014188d b4c700c 014188d b4c700c 014188d b4c700c 014188d b4c700c 014188d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mitre_ttps
- security
- adversarial-threat-annotation
---
# SentSecBert_10k_AllDataSplit
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This is a model used in our work "Semantic Ranking for Automated Adversarial Technique Annotation in Security Text". The code is available at: [https://github.com/qcri/Text2TTP](https://github.com/qcri/Text2TTP)
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('SentSecBert')
embeddings = model.encode(sentences)
print(embeddings)
```
## Citation
```
@article{kumarasinghe2024semantic,
title={Semantic Ranking for Automated Adversarial Technique Annotation in Security Text},
author={Kumarasinghe, Udesh and Lekssays, Ahmed and Sencar, Husrev Taha and Boughorbel, Sabri and Elvitigala, Charitha and Nakov, Preslav},
journal={arXiv preprint arXiv:2403.17068},
year={2024}
}
```
|