Quentin Gallouédec commited on
Commit
5222784
·
1 Parent(s): 60fadde

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Acrobot-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: QRDQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Acrobot-v1
16
+ type: Acrobot-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -86.40 +/- 23.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **QRDQN** Agent playing **Acrobot-v1**
25
+ This is a trained model of a **QRDQN** agent playing **Acrobot-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo qrdqn --env Acrobot-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo qrdqn --env Acrobot-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo qrdqn --env Acrobot-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo qrdqn --env Acrobot-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo qrdqn --env Acrobot-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo qrdqn --env Acrobot-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('buffer_size', 50000),
67
+ ('exploration_final_eps', 0.1),
68
+ ('exploration_fraction', 0.12),
69
+ ('gamma', 0.99),
70
+ ('gradient_steps', -1),
71
+ ('learning_rate', 0.00063),
72
+ ('learning_starts', 0),
73
+ ('n_timesteps', 100000.0),
74
+ ('policy', 'MlpPolicy'),
75
+ ('policy_kwargs', 'dict(net_arch=[256, 256], n_quantiles=25)'),
76
+ ('target_update_interval', 250),
77
+ ('train_freq', 4),
78
+ ('normalize', False)])
79
+ ```
args.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - qrdqn
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - Acrobot-v1
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 20
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 5
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - progress
45
+ - false
46
+ - - pruner
47
+ - median
48
+ - - sampler
49
+ - tpe
50
+ - - save_freq
51
+ - -1
52
+ - - save_replay_buffer
53
+ - false
54
+ - - seed
55
+ - 2309622469
56
+ - - storage
57
+ - null
58
+ - - study_name
59
+ - null
60
+ - - tensorboard_log
61
+ - runs/Acrobot-v1__qrdqn__2309622469__1670942910
62
+ - - track
63
+ - true
64
+ - - trained_agent
65
+ - ''
66
+ - - truncate_last_trajectory
67
+ - true
68
+ - - uuid
69
+ - false
70
+ - - vec_env
71
+ - dummy
72
+ - - verbose
73
+ - 1
74
+ - - wandb_entity
75
+ - openrlbenchmark
76
+ - - wandb_project_name
77
+ - sb3
78
+ - - yaml_file
79
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - buffer_size
5
+ - 50000
6
+ - - exploration_final_eps
7
+ - 0.1
8
+ - - exploration_fraction
9
+ - 0.12
10
+ - - gamma
11
+ - 0.99
12
+ - - gradient_steps
13
+ - -1
14
+ - - learning_rate
15
+ - 0.00063
16
+ - - learning_starts
17
+ - 0
18
+ - - n_timesteps
19
+ - 100000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[256, 256], n_quantiles=25)
24
+ - - target_update_interval
25
+ - 250
26
+ - - train_freq
27
+ - 4
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
qrdqn-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef9436a170f3d46479bde20ca11903b68855f43529a692f453765b490a088cf
3
+ size 1419361
qrdqn-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
qrdqn-Acrobot-v1/data ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVLgAAAAAAAACMGnNiM19jb250cmliLnFyZHFuLnBvbGljaWVzlIwLUVJEUU5Qb2xpY3mUk5Qu",
5
+ "__module__": "sb3_contrib.qrdqn.policies",
6
+ "__doc__": "\n Policy class with quantile and target networks for QR-DQN.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param n_quantiles: Number of quantiles\n :param net_arch: The specification of the network architecture.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function QRDQNPolicy.__init__ at 0x7f48962d3820>",
8
+ "_build": "<function QRDQNPolicy._build at 0x7f48962d38b0>",
9
+ "make_quantile_net": "<function QRDQNPolicy.make_quantile_net at 0x7f48962d3940>",
10
+ "forward": "<function QRDQNPolicy.forward at 0x7f48962d39d0>",
11
+ "_predict": "<function QRDQNPolicy._predict at 0x7f48962d3a60>",
12
+ "_get_constructor_parameters": "<function QRDQNPolicy._get_constructor_parameters at 0x7f48962d3af0>",
13
+ "set_training_mode": "<function QRDQNPolicy.set_training_mode at 0x7f48962d3b80>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc._abc_data object at 0x7f48962d6800>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ ":type:": "<class 'dict'>",
20
+ ":serialized:": "gAWVfQAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKE0AAU0AAWWMC25fcXVhbnRpbGVzlEsZjA9vcHRpbWl6ZXJfY2xhc3OUjBB0b3JjaC5vcHRpbS5hZGFtlIwEQWRhbZSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lIwDZXBzlEc/FHrhR64Ue3N1Lg==",
21
+ "net_arch": [
22
+ 256,
23
+ 256
24
+ ],
25
+ "n_quantiles": 25,
26
+ "optimizer_class": "<class 'torch.optim.adam.Adam'>",
27
+ "optimizer_kwargs": {
28
+ "eps": 7.8125e-05
29
+ }
30
+ },
31
+ "observation_space": {
32
+ ":type:": "<class 'gym.spaces.box.Box'>",
33
+ ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAP9sPSUHWMeJBlGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
34
+ "dtype": "float32",
35
+ "_shape": [
36
+ 6
37
+ ],
38
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
39
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
40
+ "bounded_below": "[ True True True True True True]",
41
+ "bounded_above": "[ True True True True True True]",
42
+ "_np_random": null
43
+ },
44
+ "action_space": {
45
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
46
+ ":serialized:": "gAWVUgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
47
+ "n": 3,
48
+ "_shape": [],
49
+ "dtype": "int64",
50
+ "_np_random": "RandomState(MT19937)"
51
+ },
52
+ "n_envs": 1,
53
+ "num_timesteps": 100000,
54
+ "_total_timesteps": 100000,
55
+ "_num_timesteps_at_start": 0,
56
+ "seed": 0,
57
+ "action_noise": null,
58
+ "start_time": 1670942912295672899,
59
+ "learning_rate": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
62
+ },
63
+ "tensorboard_log": "runs/Acrobot-v1__qrdqn__2309622469__1670942910/Acrobot-v1",
64
+ "lr_schedule": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWV/QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL3FnYWxsb3VlZGVjL3JsLWJhc2VsaW5lczMtem9vL2Vudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
67
+ },
68
+ "_last_obs": null,
69
+ "_last_episode_starts": {
70
+ ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
72
+ },
73
+ "_last_original_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAEuXCz/tl1Y/izN8v8y/L75jZTHAj2yNQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
76
+ },
77
+ "_episode_num": 1041,
78
+ "use_sde": false,
79
+ "sde_sample_freq": -1,
80
+ "_current_progress_remaining": 0.0,
81
+ "ep_info_buffer": {
82
+ ":type:": "<class 'collections.deque'>",
83
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFhAAAAAAACMAWyUS2KMAXSUR0BqbIzJp35fdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BqczzundftdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BqeGH31zySdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BqfmGGmDUWdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BqhdPUKArhdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BqimA7PppwdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BqkGRT0g8sdX2UKGgGR8BcgAAAAAAAaAdLc2gIR0BqmMxh2GIsdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0Bqnnn8sMAndX2UKGgGR8BQAAAAAAAAaAdLQWgIR0Bqo1s7+1jRdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BqqUyrPt2LdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0Bqr2DQJHAidX2UKGgGR8BVgAAAAAAAaAdLV2gIR0Bqte9g4OtodX2UKGgGR8BSQAAAAAAAaAdLSmgIR0Bqu6JIlMRIdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BqwkQZn+Q2dX2UKGgGR8BcAAAAAAAAaAdLcWgIR0BqyoHE/B3zdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bq0Ib+98JEdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bq1j7CSA6NdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0Bq2+x4Y77sdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0Bq4LbYbsF/dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0Bq5jCxeLNwdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0Bq69+LFXJYdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0Bq8QTsY2sJdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bq91LBbfP5dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0Bq/eoegctHdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BrBCMm4RVZdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0BrC/sVtXPrdX2UKGgGR8BcAAAAAAAAaAdLcWgIR0BrFDZg5R0mdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BrGM4m1IAfdX2UKGgGR8BaQAAAAAAAaAdLamgIR0BrIEV1wHZ9dX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BrJpmseXAudX2UKGgGR8BeQAAAAAAAaAdLemgIR0BrMAKtxMnJdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BrNzBInSfEdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BrPYod+5OKdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BrQ9EVnEl3dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BrSdbkfcN6dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0BrT4nndO6/dX2UKGgGR8BYwAAAAAAAaAdLZGgIR0BrVxPEbYK6dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BrXXYDklu4dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BrZK6xxDLKdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BradefI0ZWdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BrcIdhiLEUdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BrdtdonKGMdX2UKGgGR8BagAAAAAAAaAdLa2gIR0BrfrpA2Q4kdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BrhBqCYkVvdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BriOzyBkI5dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BrjwfGMn7YdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BrlReeFtbcdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BrmuM+/xlQdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BroUMRYigTdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0Brpe98JD3NdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0Brqs+u/1xsdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BrsT3bmEGrdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0Brt4ZflZHNdX2UKGgGR8BgoAAAAAAAaAdLhmgIR0Brwa53C9AYdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0Brx5IQOFxodX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BrzYTdtVJddX2UKGgGR8BSgAAAAAAAaAdLS2gIR0Br0zSiM5wPdX2UKGgGR8BhoAAAAAAAaAdLjmgIR0Br3V0ihWYGdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Br4v4dp7C0dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0Br6B60IC2ddX2UKGgGR8BVQAAAAAAAaAdLVmgIR0Br7kMw1zhhdX2UKGgGR8BOgAAAAAAAaAdLPmgIR0Br8v5tWMjvdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0Br+fYraufVdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0Br/wp2ECeVdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BsBJylvZRLdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BsCpAhStNjdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BsEIljVhCudX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BsFoqd6LOzdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BsG//1g6U8dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BsIn1YhdMTdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BsJ2cBltj1dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BsK/XTVlPKdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0BsMtbaAWi2dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BsN2X/o7mudX2UKGgGR8BaAAAAAAAAaAdLaWgIR0BsPrZamoBJdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BsQzvVmSQpdX2UKGgGR8BbAAAAAAAAaAdLbWgIR0BsSuEh7mdRdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BsUSzw+dK/dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BsVtL127nQdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BsW/LNfPX1dX2UKGgGR8BaAAAAAAAAaAdLaWgIR0BsY0I3R5TqdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BsaGi35N48dX2UKGgGR8BhIAAAAAAAaAdLimgIR0BscfIuGsV+dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0Bsd2hufmLcdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BsfWjj7yhBdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BsgpRGc4HYdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BsiNSKm8/VdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BsjjoOhCdCdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BskslHBk7PdX2UKGgGR8BewAAAAAAAaAdLfGgIR0Bsm5KODJ2ddX2UKGgGR8BPAAAAAAAAaAdLP2gIR0Bsn/nbItDldX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BspHd69kBkdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0Bsqtv4ubqhdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0Bsr/cnE2pAdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BstN/c32mIdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0Bsufs5XEIgdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0Bsvp4QjD8+dX2UKGgGR8BYwAAAAAAAaAdLZGgIR0BsxkENe+mFdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0Bsy7zErGzbdWUu"
84
+ },
85
+ "ep_success_buffer": {
86
+ ":type:": "<class 'collections.deque'>",
87
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
88
+ },
89
+ "_n_updates": 100000,
90
+ "buffer_size": 1,
91
+ "batch_size": 128,
92
+ "learning_starts": 0,
93
+ "tau": 1.0,
94
+ "gamma": 0.99,
95
+ "gradient_steps": -1,
96
+ "optimize_memory_usage": false,
97
+ "replay_buffer_class": {
98
+ ":type:": "<class 'abc.ABCMeta'>",
99
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
100
+ "__module__": "stable_baselines3.common.buffers",
101
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
102
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f489676a430>",
103
+ "add": "<function ReplayBuffer.add at 0x7f489676a4c0>",
104
+ "sample": "<function ReplayBuffer.sample at 0x7f489676a550>",
105
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f489676a5e0>",
106
+ "__abstractmethods__": "frozenset()",
107
+ "_abc_impl": "<_abc._abc_data object at 0x7f4896761c00>"
108
+ },
109
+ "replay_buffer_kwargs": {},
110
+ "train_freq": {
111
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
112
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
113
+ },
114
+ "actor": null,
115
+ "use_sde_at_warmup": false,
116
+ "exploration_initial_eps": 1.0,
117
+ "exploration_final_eps": 0.1,
118
+ "exploration_fraction": 0.12,
119
+ "target_update_interval": 250,
120
+ "max_grad_norm": null,
121
+ "exploration_rate": 0.1,
122
+ "exploration_schedule": {
123
+ ":type:": "<class 'function'>",
124
+ ":serialized:": "gAWVYQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxFL2hvbWUvcWdhbGxvdWVkZWMvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxFL2hvbWUvcWdhbGxvdWVkZWMvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGg3Rz++uFHrhR64hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
125
+ },
126
+ "n_quantiles": 25,
127
+ "batch_norm_stats": [],
128
+ "batch_norm_stats_target": []
129
+ }
qrdqn-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bdeaa5af644f33b967d1517b1e7bc0a57b278c449d48931c6acd906894852c5
3
+ size 699823
qrdqn-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e86e8a451ff85b4861908f6c19615a3d127705bd8327f1ba400d06e61b368ec
3
+ size 699265
qrdqn-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
qrdqn-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ae566ce59e8a98431d78f416a6228d56cf26a9fc8d3c643b5354d73e1f6c40
3
+ size 922626
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -86.4, "std_reward": 23.59745749016194, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:03:36.811817"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b08d13789873b8fca216db69edd989a6af51d0d5380dcc17759c341cd77c462b
3
+ size 24240