Quentin Gallouédec commited on
Commit
1cbad65
·
1 Parent(s): ae7e14a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HopperBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: HopperBulletEnv-v0
16
+ type: HopperBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 223.97 +/- 34.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **HopperBulletEnv-v0**
25
+ This is a trained model of a **SAC** agent playing **HopperBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env HopperBulletEnv-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env HopperBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env HopperBulletEnv-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env HopperBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env HopperBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env HopperBulletEnv-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 300000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.98),
69
+ ('gradient_steps', 8),
70
+ ('learning_rate', 'lin_7.3e-4'),
71
+ ('learning_starts', 10000),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
75
+ ('tau', 0.02),
76
+ ('train_freq', 8),
77
+ ('use_sde', True),
78
+ ('normalize', False)])
79
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - HopperBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 216112874
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/HopperBulletEnv-v0__sac__216112874__1671931837
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.98
10
+ - - gradient_steps
11
+ - 8
12
+ - - learning_rate
13
+ - lin_7.3e-4
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3, net_arch=[400, 300])
22
+ - - tau
23
+ - 0.02
24
+ - - train_freq
25
+ - 8
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72b6f62456e5da4b7f9dae70fa1e23631bbfadc67ff9283c51805f5fc7cc2b19
3
+ size 1350861
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 223.9651049, "std_reward": 34.39977342224693, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:14:45.599963"}
sac-HopperBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2ddf4fa27cc645be78c6c02ef3be6151c075c1fbc1097b22a436f6c53d9726c
3
+ size 5692681
sac-HopperBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
sac-HopperBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8cbb25ef89db596f02e6fb8c542ecb0b8dbf9e7f91d305b294821b8252859a7
3
+ size 1033702
sac-HopperBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:367db86fbf11170b6da430688133f0d76971ce9d59aa9d7ddf6f96e63d1f4aa4
3
+ size 2060601
sac-HopperBulletEnv-v0/data ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f2cf3dd2ca0>",
8
+ "_build": "<function SACPolicy._build at 0x7f2cf3dd2d30>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f2cf3dd2dc0>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f2cf3dd2e50>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f2cf3dd2ee0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f2cf3dd2f70>",
13
+ "forward": "<function SACPolicy.forward at 0x7f2cf3dda040>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f2cf3dda0d0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f2cf3dda160>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7f2cf3dd6f40>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3,
22
+ "net_arch": [
23
+ 400,
24
+ 300
25
+ ],
26
+ "use_sde": true
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gAWV6wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWPAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLD4WUjAFDlHSUUpSMBGhpZ2iUaBMoljwAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSw+FlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLD4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksPhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
31
+ "dtype": "float32",
32
+ "_shape": [
33
+ 15
34
+ ],
35
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]",
36
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
37
+ "bounded_below": "[False False False False False False False False False False False False\n False False False]",
38
+ "bounded_above": "[False False False False False False False False False False False False\n False False False]",
39
+ "_np_random": null
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gAWVHgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 3
47
+ ],
48
+ "low": "[-1. -1. -1.]",
49
+ "high": "[1. 1. 1.]",
50
+ "bounded_below": "[ True True True]",
51
+ "bounded_above": "[ True True True]",
52
+ "_np_random": "RandomState(MT19937)"
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 1000000,
56
+ "_total_timesteps": 1000000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1671931839861077358,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
+ },
65
+ "tensorboard_log": "runs/HopperBulletEnv-v0__sac__216112874__1671931837/HopperBulletEnv-v0",
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
74
+ },
75
+ "_last_original_obs": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVsQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJY8AAAAAAAAAMq0FD4AAAAAAACAP3dgYz8AAAAAU5BKPgAAAAAnc6u+zOcLP/IvxL7g000/Vo89P+TIWb8m9jM/AAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsPhpSMAUOUdJRSlC4="
78
+ },
79
+ "_episode_num": 5338,
80
+ "use_sde": true,
81
+ "sde_sample_freq": -1,
82
+ "_current_progress_remaining": 0.0,
83
+ "ep_info_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGsUCx3V092MAWyUS2GMAXSUR0C/cPWbb1yvdX2UKGgGR0BwiRC7btZ3aAdLbWgIR0C/cdKwyIpIdX2UKGgGR0BvxWuaF23baAdLcWgIR0C/cs/SlWOqdX2UKGgGR0BiJMKLKmsOaAdLQGgIR0C/c1dJe3QVdX2UKGgGR0BjXValk6LgaAdLS2gIR0C/c/BeTmnwdX2UKGgGR0B2dwwnH/96aAdLj2gIR0C/dSDBqKxcdX2UKGgGR0Bwh2ajN6gNaAdLaWgIR0C/df1B+nZTdX2UKGgGR0BpzYzJp35faAdLWmgIR0C/drfLX+VDdX2UKGgGR0Bifi17Y02taAdLSmgIR0C/d1B1Tzd2dX2UKGgGR0BhbcjJMg2ZaAdLRWgIR0C/d+g9FF2FdX2UKGgGR0BkqguEmICVaAdLUGgIR0C/eJH3Hq/udX2UKGgGR0Bh+23BpHqeaAdLSmgIR0C/eSsByS3cdX2UKGgGR0B17QEU0vXcaAdLiWgIR0C/ektrftQbdX2UKGgGR0Bv1aTnq3VkaAdLZWgIR0C/eyb7wazedX2UKGgGR0BtG8VQAMlUaAdLYWgIR0C/e/J/wy6+dX2UKGgGR0BqqAjSofjkaAdLXGgIR0C/fLwwblzVdX2UKGgGR0BsrZ0yP+4taAdLZ2gIR0C/fZffTCtSdX2UKGgGR0BoOygXdj5LaAdLWWgIR0C/flICIUJwdX2UKGgGR0Bv2QkPczqKaAdLaWgIR0C/fy2dupCKdX2UKGgGR0BkL7onrpqzaAdLV2gIR0C/f+Yppeu3dX2UKGgGR0BsTmITGo73aAdLXWgIR0C/gKEBsANodX2UKGgGR0Bp7a2SdOIqaAdLWmgIR0C/gWl7laKUdX2UKGgGR0B7hJDKHO8kaAdLqmgIR0C/gs1G5MDfdX2UKGgGR0BpxXa8Hv+gaAdLXGgIR0C/g4e6iCardX2UKGgGR0Bie9+5OJtSaAdLRmgIR0C/hB8kt29tdX2UKGgGR0B5UY02tMfzaAdLoGgIR0C/hW/nB+F2dX2UKGgGR0BwMB2cJ+lTaAdLZ2gIR0C/hkp71Iy1dX2UKGgGR0Bhnt7v5P/JaAdLQ2gIR0C/htKzZ6D5dX2UKGgGR0Br3iUqx1PnaAdLYGgIR0C/h5yrLhaUdX2UKGgGR0BuqTfNzKcNaAdLZGgIR0C/iHawD/2kdX2UKGgGR0Bp34bVBlcyaAdLW2gIR0C/iTIIOYpldX2UKGgGR0BlM6t1ZDAraAdLUmgIR0C/idtK/VRUdX2UKGgGR0CM2cmxdIGyaAdNXgFoCEdAv4y++RHPNXV9lChoBkdAYnS/20zCUGgHS0loCEdAv41XW6K+BnV9lChoBkdAaaY4BmwqzGgHS1toCEdAv44ghEBsAXV9lChoBkdAZQQE1VHWjGgHS1doCEdAv47ZeF+NLnV9lChoBkdAbL9Kr7wazmgHS2FoCEdAv4+j4DcM3XV9lChoBkdAbyNcv/R3NmgHS2loCEdAv5B+jM3ZPHV9lChoBkdAbV0r1dxAB2gHS2hoCEdAv5Fak30f5nV9lChoBkdAdtSd5prULGgHS45oCEdAv5KIsGxD9nV9lChoBkdAeJmN5MURF2gHS55oCEdAv5PKRQrMDHV9lChoBkdAe0LjNpudgGgHS7ZoCEdAv5VNHYpUgnV9lChoBkdAcHhhAnlXBGgHS2toCEdAv5YpMPBi1HV9lChoBkdAdAHOgg5imWgHS4RoCEdAv5dHFbVz63V9lChoBkdAb1W+B6KLsWgHS2doCEdAv5gin+AEuHV9lChoBkdAYrgPLgXMyWgHS0loCEdAv5i58iOea3V9lChoBkdAadtltCRfW2gHS1toCEdAv5l0iosI3XV9lChoBkdAbsoS39aUzWgHS2loCEdAv5pPiS7oS3V9lChoBkdAcALkUsWfsmgHS2toCEdAv5s57iQ1aXV9lChoBkdAcGrx2St/4WgHS2xoCEdAv5wVruYx+XV9lChoBkdAbbqZnctXgmgHS2VoCEdAv5zu+9Jz1nV9lChoBkdAfz3OsDGLk2gHS8loCEdAv56Sjbi6x3V9lChoBkdAZAYLCN0eVGgHS09oCEdAv585+RYA83V9lChoBkdAZLcK64Ds+mgHS0toCEdAv5/S8vmHQHV9lChoBkdAZA4xcE/0NGgHS1NoCEdAv6CMeEIw/XV9lChoBkdAdAwY7aIvamgHS4NoCEdAv6GZmPHT7XV9lChoBkdAYdidCmdiD2gHS0poCEdAv6Ix/FzdUXV9lChoBkdAbzwMmWt2cWgHS2VoCEdAv6MMZ9/jKnV9lChoBkdAYYx1A7gbZWgHS0loCEdAv6Oke2d/a3V9lChoBkdAcm6Fl05lv2gHS3xoCEdAv6SwpH7P6nV9lChoBkdAbC9DSgGr0mgHS1xoCEdAv6Vp+4LCvXV9lChoBkdAawkVJL/S6WgHS11oCEdAv6Y0JrtVrHV9lChoBkdAazJOnEVFhGgHS15oCEdAv6bwLy+YdHV9lChoBkdAZm/4A0bcXWgHS1JoCEdAv6eobvPTonV9lChoBkdAZUcEPDpC8mgHS05oCEdAv6hBLuhK2HV9lChoBkdATosKeCkGimgHSz1oCEdAv6jHBl+VknV9lChoBkdAcGCNPgvUSmgHS2toCEdAv6mifvnbI3V9lChoBkdAfRZQjD8+A2gHS7BoCEdAv6sVn6Eal3V9lChoBkdAa2FRMvh60WgHS2BoCEdAv6vfUAksz3V9lChoBkdAbi7+ee4Cp2gHS2hoCEdAv6y7OPeYUnV9lChoBkdAZJipnYg7o2gHS1FoCEdAv61znmq5snV9lChoBkdAgWenR1HOKWgHS9FoCEdAv68qFoL5RHV9lChoBkdAYX7iF0xM4GgHS0doCEdAv6/BPUKArnV9lChoBkdAYzHZr56+nWgHS0toCEdAv7BZS3solXV9lChoBkdAgRrb/4qPO2gHS9NoCEdAv7IPZ9NN8HV9lChoBkdAgY9bTc6/7GgHS9loCEdAv7PV7x/d7HV9lChoBkdAbUUOI68xsWgHS2ZoCEdAv7SximVJMHV9lChoBkdAaQxjXFtKqWgHS11oCEdAv7V8GRmseXV9lChoBkdAZc7tb9qDb2gHS1BoCEdAv7Yl5u63AnV9lChoBkdAbwWJRfnfVWgHS2ZoCEdAv7cBJxvNvHV9lChoBkdAbAV5/LDAJ2gHS19oCEdAv7e7KLbYb3V9lChoBkdAbgsKtxMnJGgHS2VoCEdAv7iUujASF3V9lChoBkdAbHNCb+cYqGgHS11oCEdAv7lfiGWUr3V9lChoBkdAcIdnqmj0tmgHS25oCEdAv7o6/yoXK3V9lChoBkdAYtm/7iyY5WgHS0toCEdAv7riUD+zdHV9lChoBkdAYTidbPhQ32gHS0ZoCEdAv7t5tIkJKXV9lChoBkdAb8kla8pTdmgHS2VoCEdAv7xEs5GSZHV9lChoBkdAaXrhoduHe2gHS11oCEdAv70OQyRB/3V9lChoBkdAbmTwhGH58GgHS2doCEdAv73pGFzuGHV9lChoBkdAamYiEg4ffWgHS1xoCEdAv76iyhSLqHV9lChoBkdAdu9QcghbGGgHS45oCEdAv7/RNBWxQnV9lChoBkdAbPTJ5E+gUWgHS2BoCEdAv8CaD6Fds3V9lChoBkdAdiBh5xBE8mgHS49oCEdAv8HHszEaVHV9lChoBkdAcMWeKbayr2gHS3BoCEdAv8KxuLrHEXV9lChoBkdAYWVt+kP+XWgHS0RoCEdAv8M5pqREGHV9lChoBkdAg3nnDJlrdmgHS+9oCEdAv8Uxrbg0j3V9lChoBkdAb2BM6BAfMmgHS2poCEdAv8YMhmoR7XV9lChoBkdAY1HyvLX+VGgHS1BoCEdAv8az6MzdlHV9lChoBkdAb6oCDmKZUmgHS25oCEdAv8ef8P4EfXV9lChoBkdAal9kgfU4JmgHS11oCEdAv8hoWvbGm3VlLg=="
86
+ },
87
+ "ep_success_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
90
+ },
91
+ "_n_updates": 990000,
92
+ "buffer_size": 1,
93
+ "batch_size": 256,
94
+ "learning_starts": 10000,
95
+ "tau": 0.02,
96
+ "gamma": 0.98,
97
+ "gradient_steps": 8,
98
+ "optimize_memory_usage": false,
99
+ "replay_buffer_class": {
100
+ ":type:": "<class 'abc.ABCMeta'>",
101
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
+ "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f2cf3e2a430>",
105
+ "add": "<function ReplayBuffer.add at 0x7f2cf3e2a4c0>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7f2cf3e2a550>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f2cf3e2a5e0>",
108
+ "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc._abc_data object at 0x7f2cf3e20d00>"
110
+ },
111
+ "replay_buffer_kwargs": {},
112
+ "train_freq": {
113
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
114
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
115
+ },
116
+ "use_sde_at_warmup": false,
117
+ "target_entropy": -3.0,
118
+ "ent_coef": "auto",
119
+ "target_update_interval": 1,
120
+ "_action_repeat": [
121
+ null
122
+ ],
123
+ "surgeon": null,
124
+ "batch_norm_stats": [],
125
+ "batch_norm_stats_target": [],
126
+ "_last_action": {
127
+ ":type:": "<class 'numpy.ndarray'>",
128
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHSXxr4YvA4+gLS2PpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
129
+ }
130
+ }
sac-HopperBulletEnv-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e194523c90fe7f57459ff5845156b9553377bb8dddfec17dc64ce5e395e2c62
3
+ size 1507
sac-HopperBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b68620c4ad86b6db64a9c051dbb72f0481772b1772a1388b06b26c3b6748a542
3
+ size 2575624
sac-HopperBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254a506eedff4dd921841e727b145017a97b09d2da9a03bc99b3ccbc02a580c4
3
+ size 747
sac-HopperBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c74259ca0a9af672e54eff9df30534615206ac2aaa542a559142dac2bb8f0312
3
+ size 146631