File size: 9,140 Bytes
01ce6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import torch
import base64
import tiktoken
from typing import Collection, Optional, Dict, List, Set, Tuple, Union
from transformers import PreTrainedTokenizer
from transformers.utils import PaddingStrategy
from transformers.tokenization_utils import PreTrainedTokenizer
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
class SPTokenizer:
def __init__(self, model_path):
self.vocab_file = model_path
self.pad_token = '<pad>'
self.unk_token = '<unk>'
self.mask_token = '<mask>'
self.eod_token = '<eod>'
self.eop_token = '<eop>'
self.im_start_token = '<|im_start|>'
self.im_end_token = '<|im_end|>'
## special_tokens
self.SPECIAL_TOKENS = (
self.pad_token,
self.unk_token,
self.mask_token,
self.eod_token,
self.eop_token,
'[space2]', '[space3]', '[space4]', '[space8]',
self.im_start_token, self.im_end_token
)
self.bulid_tokenizer()
self.out = self.output_core_token()
self.token2strs = {
"[space2]": " ",
"[space3]": " ",
"[space4]": " ",
"[space8]": " ",
}
self.str2tokens = {v: k for k, v in self.token2strs.items()}
self.sorted_strs = sorted(list(self.str2tokens.keys()),
key=lambda x: len(x), reverse=True)
## skip_special_tokens
self.decode_skip_special_tokens = [
self.pad_token,
self.unk_token,
self.mask_token,
self.eod_token,
self.eop_token,
self.im_start_token,
self.im_end_token]
self.decode_skip_special_tokens_ids = [self.convert_token_to_id(token) for token in self.decode_skip_special_tokens]
def _load_tiktoken_bpe(self, tiktoken_bpe_file: str):
with open(tiktoken_bpe_file, "rb") as f:
contents = f.read()
return {
base64.b64decode(token): int(rank)
for token, rank in (line.split() for line in contents.splitlines() if line)
}
def bulid_tokenizer(self):
mergeable_ranks = self._load_tiktoken_bpe(self.vocab_file)
special_tokens = {
token: index
for index, token in enumerate(
self.SPECIAL_TOKENS, start=len(mergeable_ranks)
)
}
encode = tiktoken.Encoding(
"zhinao",
pat_str=PAT_STR,
mergeable_ranks=mergeable_ranks,
special_tokens=special_tokens
)
decoder = {v: k for k, v in mergeable_ranks.items()}
decoder.update({v: k for k, v in special_tokens.items()})
decoder_token2id = {v: k for k, v in decoder.items()}
self.tokenizer = encode
self.decoder = decoder
self.decoder_token2id = decoder_token2id
self.num_tokens = len(mergeable_ranks) + len(self.SPECIAL_TOKENS)
def output_core_token(self):
"""output special tokens"""
out = {}
for t in self.SPECIAL_TOKENS:
out[t] = self.convert_token_to_id(t)
return out
def tokenize(
self,
text,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = ()):
tokens = []
text = self.convert(text)
for idx in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
tokens.append(self.decoder[idx])
return tokens
def encode(self, text, allowed_special="all", disallowed_special=()):
"""text to id"""
text = self.convert(text)
return self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
def decode(self, ids, errors="replace"):
"""id to text"""
text = self.tokenizer.decode(ids, errors=errors)
return self.deconvert(text)
def decode_tokens(self, tokens: List[str]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors="ignore")
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type bytes or str")
if temp:
text += temp.decode("utf-8", errors="ignore")
return self.deconvert(text)
def convert_id_to_token(self, idx):
return self.decoder[idx]
def convert_token_to_id(self, token):
return self.decoder_token2id[token]
def convert(self, text):
"""将文本的特殊字符转换成特殊token"""
for k in ["[br]", "<br>"]:
text = text.replace(k, "\n")
for k in self.sorted_strs:
if k in text:
text = text.replace(k, self.str2tokens[k])
return text
def deconvert(self, text):
"""将解码文本恢复原始字符"""
for t in self.token2strs:
if t in text:
text = text.replace(t, self.token2strs[t])
return text
class ZhinaoTokenizer(PreTrainedTokenizer):
vocab_files_names = {"vocab_file": "vocab/360.tiktoken"}
model_input_names = ["input_ids", "attention_mask"]
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
self.name = "ZhinaoTokenizer"
self.vocab_file = vocab_file
self.tokenizer = SPTokenizer(model_path=vocab_file)
try:
kwargs.pop('eos_token')
kwargs.pop('pad_token')
kwargs.pop('unk_token')
except:
pass
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
self.pad_token_id = self.tokenizer.convert_token_to_id(self.tokenizer.pad_token)
self.eod_id = self.tokenizer.convert_token_to_id(self.tokenizer.eod_token)
self.im_start_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_start_token)
self.im_end_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_end_token)
@property
def eop_token(self) -> str:
return self.tokenizer.eop_token
@property
def eop_token_id(self):
return self.tokenizer.convert_token_to_id(self.tokenizer.eop_token)
@property
def vocab_size(self):
return self.tokenizer.num_tokens
def get_vocab(self):
""" Returns vocab as a dict """
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def tokenize(
self,
text: str,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = (),
split_special_tokens=False,
) -> List[Union[bytes, str]]:
tokens = []
for t in self.tokenizer.encode(
text, allowed_special=allowed_special, disallowed_special=disallowed_special
):
tokens.append(self.tokenizer.decoder[t])
return tokens
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
errors: str = "ignore",
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i not in self.tokenizer.decode_skip_special_tokens_ids]
return self.tokenizer.decode(token_ids, errors=errors)
def _tokenize(self, text, **kwargs):
raise NotImplementedError
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.tokenizer.convert_token_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab. """
return self.tokenizer.convert_id_to_token(index)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
return self.tokenizer.decode_tokens(tokens)
def save_vocabulary(self, save_directory, filename_prefix=None):
"""Save only the vocabulary of the tokenizer (vocabulary). """
if os.path.isdir(save_directory):
vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
else:
vocab_file = save_directory
with open(self.vocab_file, 'rb') as fin:
proto_str = fin.read()
os.makedirs(save_directory + "/vocab", exist_ok=True)
with open(vocab_file, "wb") as writer:
writer.write(proto_str)
return (vocab_file,)
|