Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# nanoLLaVA
|
2 |
|
3 |
<p align="center">
|
4 |
<img src="https://i.ibb.co/W6qgZNp/pixelllava.webp" alt="Logo" width="350">
|
@@ -7,7 +7,16 @@
|
|
7 |
## Description
|
8 |
nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
## Usage
|
|
|
|
|
11 |
```python
|
12 |
import torch
|
13 |
import transformers
|
@@ -21,7 +30,7 @@ transformers.logging.disable_progress_bar()
|
|
21 |
warnings.filterwarnings('ignore')
|
22 |
|
23 |
# set device
|
24 |
-
torch.set_default_device('cuda') # or '
|
25 |
|
26 |
# create model
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -51,7 +60,7 @@ text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
|
51 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
52 |
|
53 |
# image, sample images can be found in images folder
|
54 |
-
image = Image.open('/
|
55 |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
56 |
|
57 |
# generate
|
@@ -62,4 +71,13 @@ output_ids = model.generate(
|
|
62 |
use_cache=True)[0]
|
63 |
|
64 |
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
```
|
|
|
1 |
+
# nanoLLaVA - Sub 1B Vision-Language Model
|
2 |
|
3 |
<p align="center">
|
4 |
<img src="https://i.ibb.co/W6qgZNp/pixelllava.webp" alt="Logo" width="350">
|
|
|
7 |
## Description
|
8 |
nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.
|
9 |
|
10 |
+
| Model | **VQA v2** | **TextVQA** | **ScienceQA** | **POPE** | **MMMU (Test)** | **MMMU (Eval)** | **GQA** | **MM-VET** |
|
11 |
+
|---------|--------|---------|-----------|------|-------------|-------------|------|--------|
|
12 |
+
| Score | 70.84 | 46.71 | 58.97 | 84.1 | 28.6 | 30.4 | 54.79| 23.9 |
|
13 |
+
|
14 |
+
## Training Data
|
15 |
+
Training Data will be released later as I am still writing a paper on this. Expect the final final to be much more powerful than the current one.
|
16 |
+
|
17 |
## Usage
|
18 |
+
You can use with `transformers` with the following script:
|
19 |
+
|
20 |
```python
|
21 |
import torch
|
22 |
import transformers
|
|
|
30 |
warnings.filterwarnings('ignore')
|
31 |
|
32 |
# set device
|
33 |
+
torch.set_default_device('cuda') # or 'cpu'
|
34 |
|
35 |
# create model
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
60 |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
61 |
|
62 |
# image, sample images can be found in images folder
|
63 |
+
image = Image.open('/path/to/image.png')
|
64 |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
65 |
|
66 |
# generate
|
|
|
71 |
use_cache=True)[0]
|
72 |
|
73 |
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
74 |
+
```
|
75 |
+
|
76 |
+
## Prompt Format
|
77 |
+
The model follow the ChatML standard, however, without `\n` at the end of `<|im_end|>`:
|
78 |
+
```
|
79 |
+
<|im_start|>system
|
80 |
+
Answer the question<|im_end|><|im_start|>user
|
81 |
+
<image>
|
82 |
+
What is the picture about?<|im_end|><|im_start|>assistant
|
83 |
```
|