qaihm-bot commited on
Commit
b033647
·
verified ·
1 Parent(s): c66d261

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +29 -18
README.md CHANGED
@@ -18,7 +18,7 @@ tags:
18
 
19
  ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
20
 
21
- This model is an implementation of ConvNext-Tiny-w8a16-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py).
22
  This repository provides scripts to run ConvNext-Tiny-w8a16-Quantized on Qualcomm® devices.
23
  More details on model performance across various devices, can be found
24
  [here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
@@ -34,14 +34,21 @@ More details on model performance across various devices, can be found
34
  - Model size: 28 MB
35
  - Precision: w8a16 (8-bit weights, 16-bit activations)
36
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
 
40
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
41
- | ---|---|---|---|---|---|---|---|
42
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.447 ms | 0 - 12 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so)
43
-
44
-
45
 
46
  ## Installation
47
 
@@ -97,16 +104,16 @@ device. This script does the following:
97
  ```bash
98
  python -m qai_hub_models.models.convnext_tiny_w8a16_quantized.export
99
  ```
100
-
101
  ```
102
- Profile Job summary of ConvNext-Tiny-w8a16-Quantized
103
- --------------------------------------------------
104
- Device: Snapdragon X Elite CRD (11)
105
- Estimated Inference Time: 3.35 ms
106
- Estimated Peak Memory Range: 0.29-0.29 MB
107
- Compute Units: NPU (215) | Total (215)
108
-
109
-
 
110
  ```
111
 
112
 
@@ -145,15 +152,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
145
  Get more details on ConvNext-Tiny-w8a16-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
146
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
147
 
 
148
  ## License
149
- - The license for the original implementation of ConvNext-Tiny-w8a16-Quantized can be found
150
- [here](https://github.com/pytorch/vision/blob/main/LICENSE).
151
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
152
 
153
  ## References
154
  * [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
155
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py)
156
 
 
 
157
  ## Community
158
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
159
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
18
 
19
  ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
20
 
21
+ This model is an implementation of ConvNext-Tiny-w8a16-Quantized found [here]({source_repo}).
22
  This repository provides scripts to run ConvNext-Tiny-w8a16-Quantized on Qualcomm® devices.
23
  More details on model performance across various devices, can be found
24
  [here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
 
34
  - Model size: 28 MB
35
  - Precision: w8a16 (8-bit weights, 16-bit activations)
36
 
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ |---|---|---|---|---|---|---|---|---|
39
+ | ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.622 ms | 0 - 116 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so) |
40
+ | ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.61 ms | 0 - 35 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so) |
41
+ | ConvNext-Tiny-w8a16-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 13.298 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
42
+ | ConvNext-Tiny-w8a16-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.178 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
43
+ | ConvNext-Tiny-w8a16-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.204 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
44
+ | ConvNext-Tiny-w8a16-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 3.204 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
45
+ | ConvNext-Tiny-w8a16-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.198 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
46
+ | ConvNext-Tiny-w8a16-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.241 ms | 0 - 41 MB | INT8 | NPU | Use Export Script |
47
+ | ConvNext-Tiny-w8a16-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.406 ms | 0 - 35 MB | INT8 | NPU | Use Export Script |
48
+ | ConvNext-Tiny-w8a16-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.505 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
49
 
50
 
51
 
 
 
 
 
 
52
 
53
  ## Installation
54
 
 
104
  ```bash
105
  python -m qai_hub_models.models.convnext_tiny_w8a16_quantized.export
106
  ```
 
107
  ```
108
+ Profiling Results
109
+ ------------------------------------------------------------
110
+ ConvNext-Tiny-w8a16-Quantized
111
+ Device : Samsung Galaxy S23 (13)
112
+ Runtime : QNN
113
+ Estimated inference time (ms) : 3.6
114
+ Estimated peak memory usage (MB): [0, 116]
115
+ Total # Ops : 215
116
+ Compute Unit(s) : NPU (215 ops)
117
  ```
118
 
119
 
 
152
  Get more details on ConvNext-Tiny-w8a16-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
153
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
154
 
155
+
156
  ## License
157
+ * The license for the original implementation of ConvNext-Tiny-w8a16-Quantized can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
158
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
159
+
160
+
161
 
162
  ## References
163
  * [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
164
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py)
165
 
166
+
167
+
168
  ## Community
169
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
170
  * For questions or feedback please [reach out to us](mailto:[email protected]).