Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,39 +35,38 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
-
| EfficientNet-B0 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.
|
39 |
-
| EfficientNet-B0 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.
|
40 |
-
| EfficientNet-B0 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.
|
41 |
-
| EfficientNet-B0 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.
|
42 |
-
| EfficientNet-B0 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.
|
43 |
-
| EfficientNet-B0 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.
|
44 |
-
| EfficientNet-B0 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.
|
45 |
-
| EfficientNet-B0 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.
|
46 |
-
| EfficientNet-B0 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.
|
47 |
-
| EfficientNet-B0 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.
|
48 |
-
| EfficientNet-B0 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.
|
49 |
-
| EfficientNet-B0 | SA7255P ADP | SA7255P | TFLITE | 22.
|
50 |
-
| EfficientNet-B0 | SA7255P ADP | SA7255P | QNN | 22.
|
51 |
-
| EfficientNet-B0 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.
|
52 |
-
| EfficientNet-B0 | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.
|
53 |
-
| EfficientNet-B0 | SA8295P ADP | SA8295P | TFLITE | 3.
|
54 |
-
| EfficientNet-B0 | SA8295P ADP | SA8295P | QNN | 3.
|
55 |
-
| EfficientNet-B0 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.
|
56 |
-
| EfficientNet-B0 | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.
|
57 |
-
| EfficientNet-B0 | SA8775P ADP | SA8775P | TFLITE | 2.
|
58 |
-
| EfficientNet-B0 | SA8775P ADP | SA8775P | QNN | 2.
|
59 |
-
| EfficientNet-B0 | QCS8450 (Proxy) | QCS8450 Proxy |
|
60 |
-
| EfficientNet-B0 |
|
61 |
-
| EfficientNet-B0 | Snapdragon X Elite CRD | Snapdragon® X Elite |
|
62 |
-
| EfficientNet-B0 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.672 ms | 15 - 15 MB | FP16 | NPU | [EfficientNet-B0.onnx](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.onnx) |
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
## Installation
|
68 |
|
69 |
-
This model can be installed as a Python package via pip.
|
70 |
|
|
|
71 |
```bash
|
72 |
pip install qai-hub-models
|
73 |
```
|
@@ -151,7 +150,7 @@ from qai_hub_models.models.efficientnet_b0 import Model
|
|
151 |
torch_model = Model.from_pretrained()
|
152 |
|
153 |
# Device
|
154 |
-
device = hub.Device("Samsung Galaxy
|
155 |
|
156 |
# Trace model
|
157 |
input_shape = torch_model.get_input_spec()
|
@@ -243,7 +242,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
243 |
|
244 |
|
245 |
## License
|
246 |
-
* The license for the original implementation of EfficientNet-B0 can be found
|
|
|
247 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
248 |
|
249 |
|
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| EfficientNet-B0 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.604 ms | 0 - 91 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
39 |
+
| EfficientNet-B0 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.672 ms | 0 - 82 MB | FP16 | NPU | [EfficientNet-B0.so](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.so) |
|
40 |
+
| EfficientNet-B0 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.605 ms | 0 - 76 MB | FP16 | NPU | [EfficientNet-B0.onnx](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.onnx) |
|
41 |
+
| EfficientNet-B0 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.128 ms | 0 - 22 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
42 |
+
| EfficientNet-B0 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.178 ms | 1 - 25 MB | FP16 | NPU | [EfficientNet-B0.so](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.so) |
|
43 |
+
| EfficientNet-B0 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.14 ms | 0 - 28 MB | FP16 | NPU | [EfficientNet-B0.onnx](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.onnx) |
|
44 |
+
| EfficientNet-B0 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.133 ms | 0 - 23 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
45 |
+
| EfficientNet-B0 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.964 ms | 1 - 23 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| EfficientNet-B0 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.21 ms | 1 - 27 MB | FP16 | NPU | [EfficientNet-B0.onnx](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.onnx) |
|
47 |
+
| EfficientNet-B0 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.603 ms | 0 - 91 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
48 |
+
| EfficientNet-B0 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.573 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| EfficientNet-B0 | SA7255P ADP | SA7255P | TFLITE | 22.4 ms | 0 - 15 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
50 |
+
| EfficientNet-B0 | SA7255P ADP | SA7255P | QNN | 22.377 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| EfficientNet-B0 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.599 ms | 0 - 81 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
52 |
+
| EfficientNet-B0 | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.569 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| EfficientNet-B0 | SA8295P ADP | SA8295P | TFLITE | 3.826 ms | 0 - 25 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
54 |
+
| EfficientNet-B0 | SA8295P ADP | SA8295P | QNN | 3.872 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| EfficientNet-B0 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.6 ms | 0 - 82 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
56 |
+
| EfficientNet-B0 | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.572 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| EfficientNet-B0 | SA8775P ADP | SA8775P | TFLITE | 2.558 ms | 0 - 16 MB | FP16 | NPU | [EfficientNet-B0.tflite](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.tflite) |
|
58 |
+
| EfficientNet-B0 | SA8775P ADP | SA8775P | QNN | 2.698 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
59 |
+
| EfficientNet-B0 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 3.189 ms | 1 - 30 MB | FP16 | NPU | Use Export Script |
|
60 |
+
| EfficientNet-B0 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.756 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
61 |
+
| EfficientNet-B0 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.696 ms | 15 - 15 MB | FP16 | NPU | [EfficientNet-B0.onnx](https://huggingface.co/qualcomm/EfficientNet-B0/blob/main/EfficientNet-B0.onnx) |
|
|
|
62 |
|
63 |
|
64 |
|
65 |
|
66 |
## Installation
|
67 |
|
|
|
68 |
|
69 |
+
Install the package via pip:
|
70 |
```bash
|
71 |
pip install qai-hub-models
|
72 |
```
|
|
|
150 |
torch_model = Model.from_pretrained()
|
151 |
|
152 |
# Device
|
153 |
+
device = hub.Device("Samsung Galaxy S24")
|
154 |
|
155 |
# Trace model
|
156 |
input_shape = torch_model.get_input_spec()
|
|
|
242 |
|
243 |
|
244 |
## License
|
245 |
+
* The license for the original implementation of EfficientNet-B0 can be found
|
246 |
+
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
247 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
248 |
|
249 |
|