Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ tags:
|
|
16 |
|
17 |
FFNet-78S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
|
18 |
|
19 |
-
This model is an implementation of FFNet-78S found [here](
|
20 |
This repository provides scripts to run FFNet-78S on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/ffnet_78s).
|
@@ -32,15 +32,32 @@ More details on model performance across various devices, can be found
|
|
32 |
- Model size: 105 MB
|
33 |
- Number of output classes: 19
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
|
38 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
-
| ---|---|---|---|---|---|---|---|
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 23.714 ms | 2 - 4 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite)
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 23.669 ms | 2 - 24 MB | FP16 | NPU | [FFNet-78S.so](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.so)
|
42 |
-
|
43 |
-
|
44 |
|
45 |
## Installation
|
46 |
|
@@ -96,16 +113,16 @@ device. This script does the following:
|
|
96 |
```bash
|
97 |
python -m qai_hub_models.models.ffnet_78s.export
|
98 |
```
|
99 |
-
|
100 |
```
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
```
|
110 |
|
111 |
|
@@ -204,15 +221,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
204 |
Get more details on FFNet-78S's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s).
|
205 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
206 |
|
|
|
207 |
## License
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
211 |
|
212 |
## References
|
213 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
214 |
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
|
215 |
|
|
|
|
|
216 |
## Community
|
217 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
218 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
16 |
|
17 |
FFNet-78S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
|
18 |
|
19 |
+
This model is an implementation of FFNet-78S found [here]({source_repo}).
|
20 |
This repository provides scripts to run FFNet-78S on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/ffnet_78s).
|
|
|
32 |
- Model size: 105 MB
|
33 |
- Number of output classes: 19
|
34 |
|
35 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
+
|---|---|---|---|---|---|---|---|---|
|
37 |
+
| FFNet-78S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 23.254 ms | 2 - 4 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
38 |
+
| FFNet-78S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 23.635 ms | 24 - 48 MB | FP16 | NPU | [FFNet-78S.so](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.so) |
|
39 |
+
| FFNet-78S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 32.7 ms | 24 - 55 MB | FP16 | NPU | [FFNet-78S.onnx](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.onnx) |
|
40 |
+
| FFNet-78S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 21.162 ms | 2 - 130 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
41 |
+
| FFNet-78S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 21.44 ms | 20 - 61 MB | FP16 | NPU | [FFNet-78S.so](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.so) |
|
42 |
+
| FFNet-78S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 29.103 ms | 2 - 153 MB | FP16 | NPU | [FFNet-78S.onnx](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.onnx) |
|
43 |
+
| FFNet-78S | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 23.104 ms | 2 - 5 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
44 |
+
| FFNet-78S | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 23.037 ms | 24 - 25 MB | FP16 | NPU | Use Export Script |
|
45 |
+
| FFNet-78S | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 23.077 ms | 2 - 5 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
46 |
+
| FFNet-78S | SA8255 (Proxy) | SA8255P Proxy | QNN | 23.073 ms | 24 - 26 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| FFNet-78S | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 23.169 ms | 2 - 4 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
48 |
+
| FFNet-78S | SA8775 (Proxy) | SA8775P Proxy | QNN | 23.407 ms | 24 - 25 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| FFNet-78S | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 23.24 ms | 2 - 4 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
50 |
+
| FFNet-78S | SA8650 (Proxy) | SA8650P Proxy | QNN | 23.501 ms | 24 - 28 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| FFNet-78S | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 39.261 ms | 1 - 108 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
52 |
+
| FFNet-78S | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 39.234 ms | 24 - 58 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| FFNet-78S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 16.614 ms | 2 - 55 MB | FP16 | NPU | [FFNet-78S.tflite](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.tflite) |
|
54 |
+
| FFNet-78S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 16.705 ms | 24 - 64 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| FFNet-78S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 20.857 ms | 26 - 86 MB | FP16 | NPU | [FFNet-78S.onnx](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.onnx) |
|
56 |
+
| FFNet-78S | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 23.035 ms | 24 - 24 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| FFNet-78S | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 36.44 ms | 31 - 31 MB | FP16 | NPU | [FFNet-78S.onnx](https://huggingface.co/qualcomm/FFNet-78S/blob/main/FFNet-78S.onnx) |
|
58 |
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
## Installation
|
63 |
|
|
|
113 |
```bash
|
114 |
python -m qai_hub_models.models.ffnet_78s.export
|
115 |
```
|
|
|
116 |
```
|
117 |
+
Profiling Results
|
118 |
+
------------------------------------------------------------
|
119 |
+
FFNet-78S
|
120 |
+
Device : Samsung Galaxy S23 (13)
|
121 |
+
Runtime : TFLITE
|
122 |
+
Estimated inference time (ms) : 23.3
|
123 |
+
Estimated peak memory usage (MB): [2, 4]
|
124 |
+
Total # Ops : 149
|
125 |
+
Compute Unit(s) : NPU (149 ops)
|
126 |
```
|
127 |
|
128 |
|
|
|
221 |
Get more details on FFNet-78S's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_78s).
|
222 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
223 |
|
224 |
+
|
225 |
## License
|
226 |
+
* The license for the original implementation of FFNet-78S can be found [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
227 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
228 |
+
|
229 |
+
|
230 |
|
231 |
## References
|
232 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
233 |
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
|
234 |
|
235 |
+
|
236 |
+
|
237 |
## Community
|
238 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
239 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|