qaihm-bot commited on
Commit
a3239a1
·
verified ·
1 Parent(s): ad4c226

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -37,8 +37,8 @@ More details on model performance across various devices, can be found
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.945 ms | 0 - 2 MB | INT8 | NPU | [ResNeXt50Quantized.tflite](https://huggingface.co/qualcomm/ResNeXt50Quantized/blob/main/ResNeXt50Quantized.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.182 ms | 0 - 94 MB | INT8 | NPU | [ResNeXt50Quantized.so](https://huggingface.co/qualcomm/ResNeXt50Quantized/blob/main/ResNeXt50Quantized.so)
42
 
43
 
44
  ## Installation
@@ -46,10 +46,11 @@ More details on model performance across various devices, can be found
46
  This model can be installed as a Python package via pip.
47
 
48
  ```bash
49
- pip install qai-hub-models
50
  ```
51
 
52
 
 
53
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
54
 
55
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
@@ -99,8 +100,8 @@ python -m qai_hub_models.models.resnext50_quantized.export
99
  Profile Job summary of ResNeXt50Quantized
100
  --------------------------------------------------
101
  Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 1.35 ms
103
- Estimated Peak Memory Range: 0.42-0.42 MB
104
  Compute Units: NPU (78) | Total (78)
105
 
106
 
 
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.941 ms | 0 - 2 MB | INT8 | NPU | [ResNeXt50Quantized.tflite](https://huggingface.co/qualcomm/ResNeXt50Quantized/blob/main/ResNeXt50Quantized.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.174 ms | 0 - 10 MB | INT8 | NPU | [ResNeXt50Quantized.so](https://huggingface.co/qualcomm/ResNeXt50Quantized/blob/main/ResNeXt50Quantized.so)
42
 
43
 
44
  ## Installation
 
46
  This model can be installed as a Python package via pip.
47
 
48
  ```bash
49
+ pip install "qai-hub-models[resnext50_quantized]"
50
  ```
51
 
52
 
53
+
54
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
55
 
56
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
 
100
  Profile Job summary of ResNeXt50Quantized
101
  --------------------------------------------------
102
  Device: Snapdragon X Elite CRD (11)
103
+ Estimated Inference Time: 1.36 ms
104
+ Estimated Peak Memory Range: 0.39-0.39 MB
105
  Compute Units: NPU (78) | Total (78)
106
 
107