qaihm-bot commited on
Commit
3ec0f00
·
verified ·
1 Parent(s): 9d1d279

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +39 -19
README.md CHANGED
@@ -18,7 +18,7 @@ tags:
18
 
19
  ResNet18 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
20
 
21
- This model is an implementation of ResNet18 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).
22
  This repository provides scripts to run ResNet18 on Qualcomm® devices.
23
  More details on model performance across various devices, can be found
24
  [here](https://aihub.qualcomm.com/models/resnet18).
@@ -33,15 +33,31 @@ More details on model performance across various devices, can be found
33
  - Number of parameters: 11.7M
34
  - Model size: 44.6 MB
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
 
38
 
39
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
40
- | ---|---|---|---|---|---|---|---|
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.383 ms | 0 - 2 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite)
42
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.46 ms | 0 - 4 MB | FP16 | NPU | [ResNet18.so](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.so)
43
-
44
-
45
 
46
  ## Installation
47
 
@@ -96,16 +112,16 @@ device. This script does the following:
96
  ```bash
97
  python -m qai_hub_models.models.resnet18.export
98
  ```
99
-
100
  ```
101
- Profile Job summary of ResNet18
102
- --------------------------------------------------
103
- Device: Snapdragon X Elite CRD (11)
104
- Estimated Inference Time: 1.45 ms
105
- Estimated Peak Memory Range: 0.57-0.57 MB
106
- Compute Units: NPU (53) | Total (53)
107
-
108
-
 
109
  ```
110
 
111
 
@@ -204,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
204
  Get more details on ResNet18's performance across various devices [here](https://aihub.qualcomm.com/models/resnet18).
205
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
206
 
 
207
  ## License
208
- - The license for the original implementation of ResNet18 can be found
209
- [here](https://github.com/pytorch/vision/blob/main/LICENSE).
210
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
211
 
212
  ## References
213
  * [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
214
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
215
 
 
 
216
  ## Community
217
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
218
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
18
 
19
  ResNet18 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
20
 
21
+ This model is an implementation of ResNet18 found [here]({source_repo}).
22
  This repository provides scripts to run ResNet18 on Qualcomm® devices.
23
  More details on model performance across various devices, can be found
24
  [here](https://aihub.qualcomm.com/models/resnet18).
 
33
  - Number of parameters: 11.7M
34
  - Model size: 44.6 MB
35
 
36
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
+ |---|---|---|---|---|---|---|---|---|
38
+ | ResNet18 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.384 ms | 0 - 2 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
39
+ | ResNet18 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.459 ms | 0 - 79 MB | FP16 | NPU | [ResNet18.so](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.so) |
40
+ | ResNet18 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.337 ms | 0 - 25 MB | FP16 | NPU | [ResNet18.onnx](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx) |
41
+ | ResNet18 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.074 ms | 0 - 28 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
42
+ | ResNet18 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.114 ms | 1 - 13 MB | FP16 | NPU | [ResNet18.so](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.so) |
43
+ | ResNet18 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.057 ms | 0 - 29 MB | FP16 | NPU | [ResNet18.onnx](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx) |
44
+ | ResNet18 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.383 ms | 0 - 26 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
45
+ | ResNet18 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.322 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
46
+ | ResNet18 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.387 ms | 0 - 5 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
47
+ | ResNet18 | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.322 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
48
+ | ResNet18 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.385 ms | 0 - 20 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
49
+ | ResNet18 | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.327 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
50
+ | ResNet18 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.386 ms | 0 - 1 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
51
+ | ResNet18 | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.326 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
52
+ | ResNet18 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.943 ms | 0 - 26 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
53
+ | ResNet18 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.994 ms | 1 - 17 MB | FP16 | NPU | Use Export Script |
54
+ | ResNet18 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.799 ms | 0 - 16 MB | FP16 | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
55
+ | ResNet18 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.971 ms | 0 - 16 MB | FP16 | NPU | [ResNet18.onnx](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx) |
56
+ | ResNet18 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.432 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
57
+ | ResNet18 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.316 ms | 23 - 23 MB | FP16 | NPU | [ResNet18.onnx](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx) |
58
 
59
 
60
 
 
 
 
 
 
 
61
 
62
  ## Installation
63
 
 
112
  ```bash
113
  python -m qai_hub_models.models.resnet18.export
114
  ```
 
115
  ```
116
+ Profiling Results
117
+ ------------------------------------------------------------
118
+ ResNet18
119
+ Device : Samsung Galaxy S23 (13)
120
+ Runtime : TFLITE
121
+ Estimated inference time (ms) : 1.4
122
+ Estimated peak memory usage (MB): [0, 2]
123
+ Total # Ops : 38
124
+ Compute Unit(s) : NPU (38 ops)
125
  ```
126
 
127
 
 
220
  Get more details on ResNet18's performance across various devices [here](https://aihub.qualcomm.com/models/resnet18).
221
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
222
 
223
+
224
  ## License
225
+ * The license for the original implementation of ResNet18 can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
226
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
227
+
228
+
229
 
230
  ## References
231
  * [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
232
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
233
 
234
+
235
+
236
  ## Community
237
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
238
  * For questions or feedback please [reach out to us](mailto:[email protected]).