shreyajn commited on
Commit
1b4ae7c
·
verified ·
1 Parent(s): e8bc711

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +226 -0
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: mit
4
+ pipeline_tag: automatic-speech-recognition
5
+ tags:
6
+ - foundation
7
+ - android
8
+
9
+ ---
10
+
11
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/whisper_tiny_en/web-assets/model_demo.png)
12
+
13
+ # Whisper-Tiny-En: Optimized for Mobile Deployment
14
+ ## Automatic speech recognition (ASR) model for English transcription as well as translation
15
+
16
+ OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below.
17
+
18
+ This model is an implementation of Whisper-Tiny-En found [here](https://github.com/openai/whisper/tree/main).
19
+ This repository provides scripts to run Whisper-Tiny-En on Qualcomm® devices.
20
+ More details on model performance across various devices, can be found
21
+ [here](https://aihub.qualcomm.com/models/whisper_tiny_en).
22
+
23
+
24
+ ### Model Details
25
+
26
+ - **Model Type:** Speech recognition
27
+ - **Model Stats:**
28
+ - Model checkpoint: tiny.en
29
+ - Input resolution: 80x3000 (30 seconds audio)
30
+ - Mean decoded sequence length: 112 tokens
31
+ - Number of parameters (WhisperEncoder): 9.39M
32
+ - Model size (WhisperEncoder): 35.9 MB
33
+ - Number of parameters (WhisperDecoder): 28.2M
34
+ - Model size (WhisperDecoder): 108 MB
35
+
36
+
37
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 67.495 ms | 0 - 105 MB | FP16 | GPU | [WhisperEncoder.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperEncoder.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 7.957 ms | 3 - 5 MB | FP16 | NPU | [WhisperDecoder.tflite](https://huggingface.co/qualcomm/Whisper-Tiny-En/blob/main/WhisperDecoder.tflite)
41
+
42
+
43
+ ## Installation
44
+
45
+ This model can be installed as a Python package via pip.
46
+
47
+ ```bash
48
+ pip install "qai-hub-models[whisper_tiny_en]"
49
+ ```
50
+
51
+
52
+
53
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
54
+
55
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
56
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
57
+
58
+ With this API token, you can configure your client to run models on the cloud
59
+ hosted devices.
60
+ ```bash
61
+ qai-hub configure --api_token API_TOKEN
62
+ ```
63
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
64
+
65
+
66
+
67
+ ## Demo off target
68
+
69
+ The package contains a simple end-to-end demo that downloads pre-trained
70
+ weights and runs this model on a sample input.
71
+
72
+ ```bash
73
+ python -m qai_hub_models.models.whisper_tiny_en.demo
74
+ ```
75
+
76
+ The above demo runs a reference implementation of pre-processing, model
77
+ inference, and post processing.
78
+
79
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
80
+ environment, please add the following to your cell (instead of the above).
81
+ ```
82
+ %run -m qai_hub_models.models.whisper_tiny_en.demo
83
+ ```
84
+
85
+
86
+ ### Run model on a cloud-hosted device
87
+
88
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
89
+ device. This script does the following:
90
+ * Performance check on-device on a cloud-hosted device
91
+ * Downloads compiled assets that can be deployed on-device for Android.
92
+ * Accuracy check between PyTorch and on-device outputs.
93
+
94
+ ```bash
95
+ python -m qai_hub_models.models.whisper_tiny_en.export
96
+ ```
97
+
98
+ ```
99
+ Profile Job summary of WhisperEncoder
100
+ --------------------------------------------------
101
+ Device: Samsung Galaxy S23 Ultra (13)
102
+ Estimated Inference Time: 67.50 ms
103
+ Estimated Peak Memory Range: 0.22-105.26 MB
104
+ Compute Units: GPU (217) | Total (217)
105
+
106
+ Profile Job summary of WhisperDecoder
107
+ --------------------------------------------------
108
+ Device: Samsung Galaxy S23 Ultra (13)
109
+ Estimated Inference Time: 7.96 ms
110
+ Estimated Peak Memory Range: 2.86-5.35 MB
111
+ Compute Units: NPU (293) | Total (293)
112
+
113
+
114
+ ```
115
+ ## How does this work?
116
+
117
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Whisper-Tiny-En/export.py)
118
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
119
+ on-device. Lets go through each step below in detail:
120
+
121
+ Step 1: **Compile model for on-device deployment**
122
+
123
+ To compile a PyTorch model for on-device deployment, we first trace the model
124
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
125
+
126
+ ```python
127
+ import torch
128
+
129
+ import qai_hub as hub
130
+ from qai_hub_models.models.whisper_tiny_en import Model
131
+
132
+ # Load the model
133
+ torch_model = Model.from_pretrained()
134
+ torch_model.eval()
135
+
136
+ # Device
137
+ device = hub.Device("Samsung Galaxy S23")
138
+
139
+ # Trace model
140
+ input_shape = torch_model.get_input_spec()
141
+ sample_inputs = torch_model.sample_inputs()
142
+
143
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
144
+
145
+ # Compile model on a specific device
146
+ compile_job = hub.submit_compile_job(
147
+ model=pt_model,
148
+ device=device,
149
+ input_specs=torch_model.get_input_spec(),
150
+ )
151
+
152
+ # Get target model to run on-device
153
+ target_model = compile_job.get_target_model()
154
+
155
+ ```
156
+
157
+
158
+ Step 2: **Performance profiling on cloud-hosted device**
159
+
160
+ After compiling models from step 1. Models can be profiled model on-device using the
161
+ `target_model`. Note that this scripts runs the model on a device automatically
162
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
163
+ provided job URL to view a variety of on-device performance metrics.
164
+ ```python
165
+ profile_job = hub.submit_profile_job(
166
+ model=target_model,
167
+ device=device,
168
+ )
169
+
170
+ ```
171
+
172
+ Step 3: **Verify on-device accuracy**
173
+
174
+ To verify the accuracy of the model on-device, you can run on-device inference
175
+ on sample input data on the same cloud hosted device.
176
+ ```python
177
+ input_data = torch_model.sample_inputs()
178
+ inference_job = hub.submit_inference_job(
179
+ model=target_model,
180
+ device=device,
181
+ inputs=input_data,
182
+ )
183
+
184
+ on_device_output = inference_job.download_output_data()
185
+
186
+ ```
187
+ With the output of the model, you can compute like PSNR, relative errors or
188
+ spot check the output with expected output.
189
+
190
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
191
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
192
+
193
+
194
+
195
+ ## Deploying compiled model to Android
196
+
197
+
198
+ The models can be deployed using multiple runtimes:
199
+ - TensorFlow Lite (`.tflite` export): [This
200
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
201
+ guide to deploy the .tflite model in an Android application.
202
+
203
+
204
+ - QNN (`.so` export ): This [sample
205
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
206
+ provides instructions on how to use the `.so` shared library in an Android application.
207
+
208
+
209
+ ## View on Qualcomm® AI Hub
210
+ Get more details on Whisper-Tiny-En's performance across various devices [here](https://aihub.qualcomm.com/models/whisper_tiny_en).
211
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
212
+
213
+ ## License
214
+ - The license for the original implementation of Whisper-Tiny-En can be found
215
+ [here](https://github.com/openai/whisper/blob/main/LICENSE).
216
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
217
+
218
+ ## References
219
+ * [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
220
+ * [Source Model Implementation](https://github.com/openai/whisper/tree/main)
221
+
222
+ ## Community
223
+ * Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
224
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
225
+
226
+