shreyajn commited on
Commit
c80afaf
·
verified ·
1 Parent(s): f3593f9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -9
README.md CHANGED
@@ -190,11 +190,17 @@ After compiling models from step 1. Models can be profiled model on-device using
190
  provisioned in the cloud. Once the job is submitted, you can navigate to a
191
  provided job URL to view a variety of on-device performance metrics.
192
  ```python
193
- profile_job = hub.submit_profile_job(
194
- model=target_model,
 
 
 
 
 
 
195
  device=device,
196
- )
197
-
198
  ```
199
 
200
  Step 3: **Verify on-device accuracy**
@@ -202,13 +208,20 @@ Step 3: **Verify on-device accuracy**
202
  To verify the accuracy of the model on-device, you can run on-device inference
203
  on sample input data on the same cloud hosted device.
204
  ```python
205
- input_data = torch_model.sample_inputs()
206
- inference_job = hub.submit_inference_job(
207
- model=target_model,
 
 
 
 
 
 
 
208
  device=device,
209
- inputs=input_data,
210
  )
211
- on_device_output = inference_job.download_output_data()
212
 
213
  ```
214
  With the output of the model, you can compute like PSNR, relative errors or
 
190
  provisioned in the cloud. Once the job is submitted, you can navigate to a
191
  provided job URL to view a variety of on-device performance metrics.
192
  ```python
193
+
194
+ encoder_profile_job = hub.submit_profile_job(
195
+ model=encoder_target_model,
196
+ device=device,
197
+ )
198
+
199
+ decoder_profile_job = hub.submit_profile_job(
200
+ model=decoder_target_model,
201
  device=device,
202
+ )
203
+
204
  ```
205
 
206
  Step 3: **Verify on-device accuracy**
 
208
  To verify the accuracy of the model on-device, you can run on-device inference
209
  on sample input data on the same cloud hosted device.
210
  ```python
211
+ encoder_input_data = encoder_model.sample_inputs()
212
+ encoder_inference_job = hub.submit_inference_job(
213
+ model=encoder_target_model,
214
+ device=device,
215
+ inputs=encoder_input_data,
216
+ )
217
+ encoder_inference_job.download_output_data()
218
+ decoder_input_data = decoder_model.sample_inputs()
219
+ decoder_inference_job = hub.submit_inference_job(
220
+ model=decoder_target_model,
221
  device=device,
222
+ inputs=decoder_input_data,
223
  )
224
+ decoder_inference_job.download_output_data()
225
 
226
  ```
227
  With the output of the model, you can compute like PSNR, relative errors or