File size: 2,672 Bytes
3b60b61
 
 
 
 
299c056
 
3b60b61
 
 
 
 
 
 
 
 
 
 
 
 
299c056
3b60b61
d603799
 
3b60b61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d603799
3b60b61
 
 
d603799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b60b61
 
 
 
9eaf3be
3b60b61
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: timm/resnet18.a1_in1k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-beans
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-beans

This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6875
- Accuracy: 0.8647

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20.0

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.0864        | 1.0   | 130  | 0.4286   | 1.0878          |
| 1.0629        | 2.0   | 260  | 0.5489   | 1.0594          |
| 1.0434        | 3.0   | 390  | 0.6767   | 1.0230          |
| 1.0214        | 4.0   | 520  | 0.6767   | 0.9965          |
| 1.0026        | 5.0   | 650  | 0.7444   | 0.9569          |
| 0.9753        | 6.0   | 780  | 0.7820   | 0.9288          |
| 0.9252        | 7.0   | 910  | 0.7970   | 0.8875          |
| 0.9192        | 8.0   | 1040 | 0.8120   | 0.8506          |
| 0.9008        | 9.0   | 1170 | 0.8045   | 0.8338          |
| 0.8079        | 10.0  | 1300 | 0.8421   | 0.8104          |
| 0.8332        | 11.0  | 1430 | 0.8346   | 0.7806          |
| 0.8103        | 12.0  | 1560 | 0.8346   | 0.7586          |
| 0.8149        | 13.0  | 1690 | 0.8421   | 0.7571          |
| 0.8186        | 14.0  | 1820 | 0.8271   | 0.7540          |
| 0.7929        | 15.0  | 1950 | 0.8120   | 0.7412          |
| 0.774         | 16.0  | 2080 | 0.7370   | 0.8496          |
| 0.7613        | 17.0  | 2210 | 0.7059   | 0.8496          |
| 0.7778        | 18.0  | 2340 | 0.6930   | 0.8271          |
| 0.8081        | 19.0  | 2470 | 0.6890   | 0.8647          |
| 0.7916        | 20.0  | 2600 | 0.6875   | 0.8647          |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.1+cu118
- Datasets 2.21.0
- Tokenizers 0.20.0