rzaba commited on
Commit
061537f
·
verified ·
1 Parent(s): 83e90e0

updated model path in the examples

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -38,7 +38,7 @@ Then you can use the model like this:
38
  from sentence_transformers import SentenceTransformer
39
  sentences = ['Ala ma kota i psa, widzi dzisiaj też śnieg', 'Ewa ma białe zęby']
40
 
41
- model = SentenceTransformer('pkedzia/polish-bi-encoder')
42
  embeddings = model.encode(sentences)
43
  print(embeddings)
44
  ```
@@ -64,8 +64,8 @@ def mean_pooling(model_output, attention_mask):
64
  sentences = ['Ala ma kota i psa, widzi dzisiaj też śnieg', 'Ewa ma białe zęby']
65
 
66
  # Load model from HuggingFace Hub
67
- tokenizer = AutoTokenizer.from_pretrained('pkedzia/polish-bi-encoder')
68
- model = AutoModel.from_pretrained('pkedzia/polish-bi-encoder')
69
 
70
  # Tokenize sentences
71
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
38
  from sentence_transformers import SentenceTransformer
39
  sentences = ['Ala ma kota i psa, widzi dzisiaj też śnieg', 'Ewa ma białe zęby']
40
 
41
+ model = SentenceTransformer('radlab/polish-bi-encoder-mean')
42
  embeddings = model.encode(sentences)
43
  print(embeddings)
44
  ```
 
64
  sentences = ['Ala ma kota i psa, widzi dzisiaj też śnieg', 'Ewa ma białe zęby']
65
 
66
  # Load model from HuggingFace Hub
67
+ tokenizer = AutoTokenizer.from_pretrained('radlab/polish-bi-encoder-mean')
68
+ model = AutoModel.from_pretrained('radlab/polish-bi-encoder-mean')
69
 
70
  # Tokenize sentences
71
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')