pkedzia commited on
Commit
7f91956
·
1 Parent(s): a4de6c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -19
README.md CHANGED
@@ -5,7 +5,12 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
9
  ---
10
 
11
  # polish-roberta-large-v2-sts
@@ -26,15 +31,14 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
35
 
36
 
37
-
38
  ## Usage (HuggingFace Transformers)
39
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
 
@@ -51,11 +55,11 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -72,14 +76,6 @@ print(sentence_embeddings)
72
  ```
73
 
74
 
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
  ## Training
84
  The model was trained with the parameters:
85
 
@@ -120,7 +116,3 @@ SentenceTransformer(
120
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
  )
122
  ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ language:
9
+ - pl
10
+ license: lgpl-3.0
11
+ library_name: sentence-transformers
12
+ datasets:
13
+ - radlab/polish-sts-dataset
14
  ---
15
 
16
  # polish-roberta-large-v2-sts
 
31
 
32
  ```python
33
  from sentence_transformers import SentenceTransformer
34
+ sentences = ["Ala ma kota", "Ala ma psa"]
35
 
36
+ model = SentenceTransformer('radlab/polish-roberta-large-v2-sts')
37
  embeddings = model.encode(sentences)
38
  print(embeddings)
39
  ```
40
 
41
 
 
42
  ## Usage (HuggingFace Transformers)
43
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
44
 
 
55
 
56
 
57
  # Sentences we want sentence embeddings for
58
+ sentences = ['Ala ma kota', 'Ala ma psa']
59
 
60
  # Load model from HuggingFace Hub
61
+ tokenizer = AutoTokenizer.from_pretrained('radlab/polish-roberta-large-v2-sts')
62
+ model = AutoModel.from_pretrained('radlab/polish-roberta-large-v2-sts')
63
 
64
  # Tokenize sentences
65
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
76
  ```
77
 
78
 
 
 
 
 
 
 
 
 
79
  ## Training
80
  The model was trained with the parameters:
81
 
 
116
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
117
  )
118
  ```