Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,12 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# polish-roberta-large-v2-sts
|
@@ -26,15 +31,14 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
35 |
|
36 |
|
37 |
-
|
38 |
## Usage (HuggingFace Transformers)
|
39 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
|
@@ -51,11 +55,11 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -72,14 +76,6 @@ print(sentence_embeddings)
|
|
72 |
```
|
73 |
|
74 |
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
## Training
|
84 |
The model was trained with the parameters:
|
85 |
|
@@ -120,7 +116,3 @@ SentenceTransformer(
|
|
120 |
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
)
|
122 |
```
|
123 |
-
|
124 |
-
## Citing & Authors
|
125 |
-
|
126 |
-
<!--- Describe where people can find more information -->
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
language:
|
9 |
+
- pl
|
10 |
+
license: lgpl-3.0
|
11 |
+
library_name: sentence-transformers
|
12 |
+
datasets:
|
13 |
+
- radlab/polish-sts-dataset
|
14 |
---
|
15 |
|
16 |
# polish-roberta-large-v2-sts
|
|
|
31 |
|
32 |
```python
|
33 |
from sentence_transformers import SentenceTransformer
|
34 |
+
sentences = ["Ala ma kota", "Ala ma psa"]
|
35 |
|
36 |
+
model = SentenceTransformer('radlab/polish-roberta-large-v2-sts')
|
37 |
embeddings = model.encode(sentences)
|
38 |
print(embeddings)
|
39 |
```
|
40 |
|
41 |
|
|
|
42 |
## Usage (HuggingFace Transformers)
|
43 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
44 |
|
|
|
55 |
|
56 |
|
57 |
# Sentences we want sentence embeddings for
|
58 |
+
sentences = ['Ala ma kota', 'Ala ma psa']
|
59 |
|
60 |
# Load model from HuggingFace Hub
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained('radlab/polish-roberta-large-v2-sts')
|
62 |
+
model = AutoModel.from_pretrained('radlab/polish-roberta-large-v2-sts')
|
63 |
|
64 |
# Tokenize sentences
|
65 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
76 |
```
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
## Training
|
80 |
The model was trained with the parameters:
|
81 |
|
|
|
116 |
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
117 |
)
|
118 |
```
|
|
|
|
|
|
|
|