raghuvamsidhar
commited on
Commit
·
1e14775
1
Parent(s):
83c5813
First attempt PPO LunarLander-v2 trained agent
Browse files- PPO-LunarLander-v2-RVD.zip +3 -0
- PPO-LunarLander-v2-RVD/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2-RVD/data +94 -0
- PPO-LunarLander-v2-RVD/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2-RVD/policy.pth +3 -0
- PPO-LunarLander-v2-RVD/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2-RVD/system_info.txt +7 -0
- README.md +35 -1
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander-v2-RVD.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a26b663d93d15f71d47e7423db75b5116f1ee6ba23fadada37c9ad515bb75709
|
3 |
+
size 147102
|
PPO-LunarLander-v2-RVD/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
PPO-LunarLander-v2-RVD/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb1721ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb1721d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb1721dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb1721e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fccb1721ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fccb1721f70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb16a7040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fccb16a70d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb16a7160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb16a71f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb16a7280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fccb1720480>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671625770132435861,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHA2j74tv0A+WEllPmCGqL5egjG+WpIVPgAAAAAAAAAAKvWtvnhE0r1l18a+GhMTvkF48z7sPSu8AACAPwAAgD8N6xw+sV5lP2iVOr4xmxC/4WMbPtq+ZL4AAAAAAAAAAJrxxjtq0LU/c20dP+062D65Tua7hKMOvgAAAAAAAAAA2vFtvgfXfz6tHi4+woW0vnXLFb52n009AAAAAAAAAAAzgPk8OpxAPqgVvrwRDpa+AKsCvUuoa70AAAAAAAAAADNvwLzXqxo6pwgzNncOIDEPAKm7RkxptQAAAAAAAIA/zbwQPBTqgLpTPRg1cUhDMGFkMbsAkWC0AACAPwAAgD/NjH+6cf11uRO9LreHx4Syr8nBO4YWUzYAAIA/AACAP+Y9Xr2kniG7rqmKPTQqZ77hlES9L/dBPwAAgD8AAAAAZszNvY++e7r6/jyzK/DLLrp5jroLas0zAACAPwAAgD8AhlU9CFOoPzIeHz8XLSC/uzM0vNXCyj0AAAAAAAAAAAD5q7wzxbE/plEyvzYHtb70G5c8Ni+sPQAAAAAAAAAAjYYzvlI0mz5WeSA+qq25vlLK4L1IOWQ9AAAAAAAAAADNNtW8cUMDu1hDCDzB+II839oZPFCyY70AAIA/AACAP5OFLr55JoU/bnQ0vmbkFL/3UgO+lNIyvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAEAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK702G6t+cUCUhpRSlIwBbJRLyIwBdJRHQJ0ud2HLzPN1fZQoaAZoCWgPQwjp7c9Fw4VvQJSGlFKUaBVL5GgWR0CdLoucc2itdX2UKGgGaAloD0MIdoh/2JIRcECUhpRSlGgVS/ZoFkdAnS6hE4Nqg3V9lChoBmgJaA9DCJgTtMnhUHNAlIaUUpRoFUvEaBZHQJ0u7QzDXOJ1fZQoaAZoCWgPQwj/IJIhx5RyQJSGlFKUaBVL0mgWR0CdLzRGc4HYdX2UKGgGaAloD0MIV5dTAiKVcECUhpRSlGgVS9BoFkdAnS89dVvMr3V9lChoBmgJaA9DCN3u5T75YHFAlIaUUpRoFU0SAWgWR0CdMIbX6InCdX2UKGgGaAloD0MI+cCO/wKHckCUhpRSlGgVS/BoFkdAnTDJ5eJHiHV9lChoBmgJaA9DCBfxnZi1F3FAlIaUUpRoFU0FAWgWR0CdMNsA/9pAdX2UKGgGaAloD0MIsfuO4TE9cUCUhpRSlGgVS7poFkdAnTEuRxLkCHV9lChoBmgJaA9DCGjKTj8opXBAlIaUUpRoFUvPaBZHQJ0xd0Lc9GJ1fZQoaAZoCWgPQwiJRKFlXa5xQJSGlFKUaBVNrAFoFkdAnTGC3solU3V9lChoBmgJaA9DCOasTzkmQm5AlIaUUpRoFUvdaBZHQJ0xl/CqIad1fZQoaAZoCWgPQwhTeTvCaaZwQJSGlFKUaBVL8WgWR0CdMi3hn8KpdX2UKGgGaAloD0MIdAtdiYDgcUCUhpRSlGgVS+1oFkdAnTL2bwz+FXV9lChoBmgJaA9DCFewjXgysXFAlIaUUpRoFUvQaBZHQJ0zQkX1rZd1fZQoaAZoCWgPQwgQd/UqcqdxQJSGlFKUaBVL3mgWR0CdM7qHXVbzdX2UKGgGaAloD0MI1hnfFxdicECUhpRSlGgVS+ZoFkdAnTPWYF7laXV9lChoBmgJaA9DCDVh+8lYk3JAlIaUUpRoFUveaBZHQJ00C57PY4B1fZQoaAZoCWgPQwjPhZFeVKNxQJSGlFKUaBVL1WgWR0CdNC3XqZ+hdX2UKGgGaAloD0MIFeC7zVtAckCUhpRSlGgVS+FoFkdAnTRwGOdXk3V9lChoBmgJaA9DCKbTug1q6nBAlIaUUpRoFUu3aBZHQJ01UeT3Zf51fZQoaAZoCWgPQwijQJ/Ik6BwQJSGlFKUaBVL1GgWR0CdNZ3rUsnRdX2UKGgGaAloD0MIL6NYbilEcECUhpRSlGgVS9VoFkdAnTWz1K5CnnV9lChoBmgJaA9DCECKOnPP1nBAlIaUUpRoFUv1aBZHQJ02IMTewcJ1fZQoaAZoCWgPQwjutDUimH1yQJSGlFKUaBVL12gWR0CdNl+nIhhZdX2UKGgGaAloD0MI6UZYVIS3cUCUhpRSlGgVS91oFkdAnTaXcpLEk3V9lChoBmgJaA9DCFhzgGCOt3JAlIaUUpRoFUvKaBZHQJ020qgAZKp1fZQoaAZoCWgPQwgwaCEBo/sWQJSGlFKUaBVLe2gWR0CdNtMyrPt2dX2UKGgGaAloD0MIMJ+sGK4Ec0CUhpRSlGgVTRYBaBZHQJ03s2hqTKV1fZQoaAZoCWgPQwiGkV7U7ldHQJSGlFKUaBVLb2gWR0CdSs5MlC1JdX2UKGgGaAloD0MIaa1oc5xnOkCUhpRSlGgVS6toFkdAnUr4oZydWnV9lChoBmgJaA9DCMeb/BadcXBAlIaUUpRoFUvpaBZHQJ1K+CaqjrR1fZQoaAZoCWgPQwisOqsFNiFyQJSGlFKUaBVL3WgWR0CdS2dTYNAkdX2UKGgGaAloD0MIYthhTDp4ckCUhpRSlGgVS/VoFkdAnUt5tJnQIHV9lChoBmgJaA9DCM6njlVKDXJAlIaUUpRoFUvdaBZHQJ1Lf4etCAt1fZQoaAZoCWgPQwgR4PQu3lZQQJSGlFKUaBVLpGgWR0CdS6ubZvkzdX2UKGgGaAloD0MIsMka9ZAYc0CUhpRSlGgVS+9oFkdAnUwgnDziCXV9lChoBmgJaA9DCL4wmSqYL3NAlIaUUpRoFUvRaBZHQJ1NZZA6dUd1fZQoaAZoCWgPQwirPeyFAsBuQJSGlFKUaBVL1mgWR0CdTdMrmQr+dX2UKGgGaAloD0MIMUJ4tPHTcECUhpRSlGgVS/toFkdAnU4DLbHp8nV9lChoBmgJaA9DCJT5R9/kB3FAlIaUUpRoFUvaaBZHQJ1OK7nPmgd1fZQoaAZoCWgPQwgt6pPc4d5xQJSGlFKUaBVNpAJoFkdAnU4xkmQbM3V9lChoBmgJaA9DCIP7AQ+M921AlIaUUpRoFUvXaBZHQJ1OUte2NNt1fZQoaAZoCWgPQwiuDRXj/O1uQJSGlFKUaBVL4WgWR0CdToSAH3UQdX2UKGgGaAloD0MId9Zuu9BKb0CUhpRSlGgVS9JoFkdAnU+Tebd8A3V9lChoBmgJaA9DCGLAkqtYqHNAlIaUUpRoFUv3aBZHQJ1P7wPRRdh1fZQoaAZoCWgPQwjhlo+kpGJwQJSGlFKUaBVLzWgWR0CdUAuKXOW0dX2UKGgGaAloD0MIUU60q1DPckCUhpRSlGgVS/BoFkdAnVAmdRR/E3V9lChoBmgJaA9DCFPovMYulW1AlIaUUpRoFUvOaBZHQJ1QRSvTw2F1fZQoaAZoCWgPQwjJqgg32StyQJSGlFKUaBVL+mgWR0CdUO4C6pYLdX2UKGgGaAloD0MIoMA7+TSgcUCUhpRSlGgVS/1oFkdAnVEWQ0XP7nV9lChoBmgJaA9DCBdGelE7pnFAlIaUUpRoFUviaBZHQJ1ROe18b711fZQoaAZoCWgPQwjUmBBzSZVxQJSGlFKUaBVLx2gWR0CdUsKAavRrdX2UKGgGaAloD0MIopxoV6GzbUCUhpRSlGgVS8FoFkdAnVLfitJWenV9lChoBmgJaA9DCN2YnrCEe3FAlIaUUpRoFUvRaBZHQJ1S35eqrBF1fZQoaAZoCWgPQwippE5AE4hUQJSGlFKUaBVLjGgWR0CdUx1m8M/hdX2UKGgGaAloD0MIofKv5dXgcECUhpRSlGgVS+9oFkdAnVM6yGBWgnV9lChoBmgJaA9DCJFFmngH3G9AlIaUUpRoFUv1aBZHQJ1Tr67/XGx1fZQoaAZoCWgPQwiSyhRzEA5yQJSGlFKUaBVNDAFoFkdAnVQXNke6qnV9lChoBmgJaA9DCOAQqtRshG1AlIaUUpRoFU0mAWgWR0CdVCf8uSOjdX2UKGgGaAloD0MIZFsGnCW7cUCUhpRSlGgVS+JoFkdAnVTEbxVhkXV9lChoBmgJaA9DCChhpu3fUHFAlIaUUpRoFUvlaBZHQJ1VYTZg5R11fZQoaAZoCWgPQwgcsoF0cblzQJSGlFKUaBVL7WgWR0CdVbSs8xKydX2UKGgGaAloD0MInBVREz1ncECUhpRSlGgVS/toFkdAnVXI7muDBnV9lChoBmgJaA9DCD83NGUnNHFAlIaUUpRoFUvVaBZHQJ1V3TodMkB1fZQoaAZoCWgPQwhtq1lnfCJwQJSGlFKUaBVLzGgWR0CdVdVX3g1ndX2UKGgGaAloD0MIjEzAr1FqckCUhpRSlGgVS/9oFkdAnVcL7Gecx3V9lChoBmgJaA9DCAN9Ik/S0XBAlIaUUpRoFUvSaBZHQJ1Xo/JNj9Z1fZQoaAZoCWgPQwiWBn5Ug3dyQJSGlFKUaBVL4GgWR0CdV+EVFhG6dX2UKGgGaAloD0MIpUkp6PYbcUCUhpRSlGgVS+BoFkdAnVf3buc+aHV9lChoBmgJaA9DCHgI46fxAG5AlIaUUpRoFUvbaBZHQJ1YNDfFaSt1fZQoaAZoCWgPQwg7qpog6rhvQJSGlFKUaBVLu2gWR0CdWEw0fozOdX2UKGgGaAloD0MIJ6H0hZA8cUCUhpRSlGgVS9BoFkdAnVhl6iTMaHV9lChoBmgJaA9DCMwqbAb4iHFAlIaUUpRoFUvNaBZHQJ1Yu++M6zV1fZQoaAZoCWgPQwhLHk/Lz8ZyQJSGlFKUaBVNAgFoFkdAnVjzUVi4KHV9lChoBmgJaA9DCLGJzFyg83JAlIaUUpRoFUvtaBZHQJ1aItqYZ2p1fZQoaAZoCWgPQwiqtTALbcRwQJSGlFKUaBVLzGgWR0CdWnudwvQGdX2UKGgGaAloD0MI9G3BUl1LcUCUhpRSlGgVS95oFkdAnVrYYNy5qnV9lChoBmgJaA9DCPTDCOFRw3FAlIaUUpRoFUvnaBZHQJ1bMg/1QIl1fZQoaAZoCWgPQwjuJ2N8mIBvQJSGlFKUaBVL52gWR0CdW0hkiD/VdX2UKGgGaAloD0MIbCOe7OapcUCUhpRSlGgVTQEBaBZHQJ1bZtgrpaB1fZQoaAZoCWgPQwijO4idKbJxQJSGlFKUaBVNCANoFkdAnVy/5k9U0nV9lChoBmgJaA9DCFKeeTms83FAlIaUUpRoFUvwaBZHQJ1c1Hz6JqJ1fZQoaAZoCWgPQwhOt+wQvwVxQJSGlFKUaBVLzmgWR0CdXNweNkvsdX2UKGgGaAloD0MIVBnG3SAkUkCUhpRSlGgVS6hoFkdAnVzhvR7Z4HV9lChoBmgJaA9DCGuBPSbS9nBAlIaUUpRoFUvCaBZHQJ1dBQ1rIo51fZQoaAZoCWgPQwggXWxaaUZwQJSGlFKUaBVL4GgWR0CdXQ2tdRixdX2UKGgGaAloD0MIxsIQOX3Qc0CUhpRSlGgVS9NoFkdAnV1vsRg7YHV9lChoBmgJaA9DCA3EspkDoXFAlIaUUpRoFUv2aBZHQJ1dwsAeaKF1fZQoaAZoCWgPQwg3qWisfVJxQJSGlFKUaBVNAQFoFkdAnV4veYUnHHV9lChoBmgJaA9DCJhMFYwKDnJAlIaUUpRoFUvtaBZHQJ1edpeu3c51fZQoaAZoCWgPQwi4BOCf0lhwQJSGlFKUaBVL7mgWR0CdX4jgydnTdX2UKGgGaAloD0MIByRh3w5tc0CUhpRSlGgVS8NoFkdAnV+bsKLKm3V9lChoBmgJaA9DCEpGzsIedW9AlIaUUpRoFUvnaBZHQJ1fqQlruYx1fZQoaAZoCWgPQwhXfEPh83NxQJSGlFKUaBVL12gWR0CdX+qtYB/7dX2UKGgGaAloD0MIvRqgNNQscECUhpRSlGgVS+ZoFkdAnWAlabF0gnV9lChoBmgJaA9DCNQnucNmeXBAlIaUUpRoFUvYaBZHQJ1haF8G9pR1fZQoaAZoCWgPQwhGXtbEAutxQJSGlFKUaBVL22gWR0CdYYuNgjQidX2UKGgGaAloD0MIfCqnPSUTcUCUhpRSlGgVS9loFkdAnWGgZn+Q2nVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 496,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2-RVD/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbf194e05c9eb24385f4bfcf29ecc4a30e9a85452e8e9c719313582c905cbf86
|
3 |
+
size 87929
|
PPO-LunarLander-v2-RVD/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:815490f5cf00d177a9e480d03dcfa0b05b6117bc7dbbc79c85f0c0ae66b838a8
|
3 |
+
size 43201
|
PPO-LunarLander-v2-RVD/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2-RVD/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 284.82 +/- 13.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb1721ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb1721d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb1721dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb1721e50>", "_build": "<function ActorCriticPolicy._build at 0x7fccb1721ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fccb1721f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb16a7040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fccb16a70d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb16a7160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb16a71f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb16a7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fccb1720480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671625770132435861, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHA2j74tv0A+WEllPmCGqL5egjG+WpIVPgAAAAAAAAAAKvWtvnhE0r1l18a+GhMTvkF48z7sPSu8AACAPwAAgD8N6xw+sV5lP2iVOr4xmxC/4WMbPtq+ZL4AAAAAAAAAAJrxxjtq0LU/c20dP+062D65Tua7hKMOvgAAAAAAAAAA2vFtvgfXfz6tHi4+woW0vnXLFb52n009AAAAAAAAAAAzgPk8OpxAPqgVvrwRDpa+AKsCvUuoa70AAAAAAAAAADNvwLzXqxo6pwgzNncOIDEPAKm7RkxptQAAAAAAAIA/zbwQPBTqgLpTPRg1cUhDMGFkMbsAkWC0AACAPwAAgD/NjH+6cf11uRO9LreHx4Syr8nBO4YWUzYAAIA/AACAP+Y9Xr2kniG7rqmKPTQqZ77hlES9L/dBPwAAgD8AAAAAZszNvY++e7r6/jyzK/DLLrp5jroLas0zAACAPwAAgD8AhlU9CFOoPzIeHz8XLSC/uzM0vNXCyj0AAAAAAAAAAAD5q7wzxbE/plEyvzYHtb70G5c8Ni+sPQAAAAAAAAAAjYYzvlI0mz5WeSA+qq25vlLK4L1IOWQ9AAAAAAAAAADNNtW8cUMDu1hDCDzB+II839oZPFCyY70AAIA/AACAP5OFLr55JoU/bnQ0vmbkFL/3UgO+lNIyvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAEAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK702G6t+cUCUhpRSlIwBbJRLyIwBdJRHQJ0ud2HLzPN1fZQoaAZoCWgPQwjp7c9Fw4VvQJSGlFKUaBVL5GgWR0CdLoucc2itdX2UKGgGaAloD0MIdoh/2JIRcECUhpRSlGgVS/ZoFkdAnS6hE4Nqg3V9lChoBmgJaA9DCJgTtMnhUHNAlIaUUpRoFUvEaBZHQJ0u7QzDXOJ1fZQoaAZoCWgPQwj/IJIhx5RyQJSGlFKUaBVL0mgWR0CdLzRGc4HYdX2UKGgGaAloD0MIV5dTAiKVcECUhpRSlGgVS9BoFkdAnS89dVvMr3V9lChoBmgJaA9DCN3u5T75YHFAlIaUUpRoFU0SAWgWR0CdMIbX6InCdX2UKGgGaAloD0MI+cCO/wKHckCUhpRSlGgVS/BoFkdAnTDJ5eJHiHV9lChoBmgJaA9DCBfxnZi1F3FAlIaUUpRoFU0FAWgWR0CdMNsA/9pAdX2UKGgGaAloD0MIsfuO4TE9cUCUhpRSlGgVS7poFkdAnTEuRxLkCHV9lChoBmgJaA9DCGjKTj8opXBAlIaUUpRoFUvPaBZHQJ0xd0Lc9GJ1fZQoaAZoCWgPQwiJRKFlXa5xQJSGlFKUaBVNrAFoFkdAnTGC3solU3V9lChoBmgJaA9DCOasTzkmQm5AlIaUUpRoFUvdaBZHQJ0xl/CqIad1fZQoaAZoCWgPQwhTeTvCaaZwQJSGlFKUaBVL8WgWR0CdMi3hn8KpdX2UKGgGaAloD0MIdAtdiYDgcUCUhpRSlGgVS+1oFkdAnTL2bwz+FXV9lChoBmgJaA9DCFewjXgysXFAlIaUUpRoFUvQaBZHQJ0zQkX1rZd1fZQoaAZoCWgPQwgQd/UqcqdxQJSGlFKUaBVL3mgWR0CdM7qHXVbzdX2UKGgGaAloD0MI1hnfFxdicECUhpRSlGgVS+ZoFkdAnTPWYF7laXV9lChoBmgJaA9DCDVh+8lYk3JAlIaUUpRoFUveaBZHQJ00C57PY4B1fZQoaAZoCWgPQwjPhZFeVKNxQJSGlFKUaBVL1WgWR0CdNC3XqZ+hdX2UKGgGaAloD0MIFeC7zVtAckCUhpRSlGgVS+FoFkdAnTRwGOdXk3V9lChoBmgJaA9DCKbTug1q6nBAlIaUUpRoFUu3aBZHQJ01UeT3Zf51fZQoaAZoCWgPQwijQJ/Ik6BwQJSGlFKUaBVL1GgWR0CdNZ3rUsnRdX2UKGgGaAloD0MIL6NYbilEcECUhpRSlGgVS9VoFkdAnTWz1K5CnnV9lChoBmgJaA9DCECKOnPP1nBAlIaUUpRoFUv1aBZHQJ02IMTewcJ1fZQoaAZoCWgPQwjutDUimH1yQJSGlFKUaBVL12gWR0CdNl+nIhhZdX2UKGgGaAloD0MI6UZYVIS3cUCUhpRSlGgVS91oFkdAnTaXcpLEk3V9lChoBmgJaA9DCFhzgGCOt3JAlIaUUpRoFUvKaBZHQJ020qgAZKp1fZQoaAZoCWgPQwgwaCEBo/sWQJSGlFKUaBVLe2gWR0CdNtMyrPt2dX2UKGgGaAloD0MIMJ+sGK4Ec0CUhpRSlGgVTRYBaBZHQJ03s2hqTKV1fZQoaAZoCWgPQwiGkV7U7ldHQJSGlFKUaBVLb2gWR0CdSs5MlC1JdX2UKGgGaAloD0MIaa1oc5xnOkCUhpRSlGgVS6toFkdAnUr4oZydWnV9lChoBmgJaA9DCMeb/BadcXBAlIaUUpRoFUvpaBZHQJ1K+CaqjrR1fZQoaAZoCWgPQwisOqsFNiFyQJSGlFKUaBVL3WgWR0CdS2dTYNAkdX2UKGgGaAloD0MIYthhTDp4ckCUhpRSlGgVS/VoFkdAnUt5tJnQIHV9lChoBmgJaA9DCM6njlVKDXJAlIaUUpRoFUvdaBZHQJ1Lf4etCAt1fZQoaAZoCWgPQwgR4PQu3lZQQJSGlFKUaBVLpGgWR0CdS6ubZvkzdX2UKGgGaAloD0MIsMka9ZAYc0CUhpRSlGgVS+9oFkdAnUwgnDziCXV9lChoBmgJaA9DCL4wmSqYL3NAlIaUUpRoFUvRaBZHQJ1NZZA6dUd1fZQoaAZoCWgPQwirPeyFAsBuQJSGlFKUaBVL1mgWR0CdTdMrmQr+dX2UKGgGaAloD0MIMUJ4tPHTcECUhpRSlGgVS/toFkdAnU4DLbHp8nV9lChoBmgJaA9DCJT5R9/kB3FAlIaUUpRoFUvaaBZHQJ1OK7nPmgd1fZQoaAZoCWgPQwgt6pPc4d5xQJSGlFKUaBVNpAJoFkdAnU4xkmQbM3V9lChoBmgJaA9DCIP7AQ+M921AlIaUUpRoFUvXaBZHQJ1OUte2NNt1fZQoaAZoCWgPQwiuDRXj/O1uQJSGlFKUaBVL4WgWR0CdToSAH3UQdX2UKGgGaAloD0MId9Zuu9BKb0CUhpRSlGgVS9JoFkdAnU+Tebd8A3V9lChoBmgJaA9DCGLAkqtYqHNAlIaUUpRoFUv3aBZHQJ1P7wPRRdh1fZQoaAZoCWgPQwjhlo+kpGJwQJSGlFKUaBVLzWgWR0CdUAuKXOW0dX2UKGgGaAloD0MIUU60q1DPckCUhpRSlGgVS/BoFkdAnVAmdRR/E3V9lChoBmgJaA9DCFPovMYulW1AlIaUUpRoFUvOaBZHQJ1QRSvTw2F1fZQoaAZoCWgPQwjJqgg32StyQJSGlFKUaBVL+mgWR0CdUO4C6pYLdX2UKGgGaAloD0MIoMA7+TSgcUCUhpRSlGgVS/1oFkdAnVEWQ0XP7nV9lChoBmgJaA9DCBdGelE7pnFAlIaUUpRoFUviaBZHQJ1ROe18b711fZQoaAZoCWgPQwjUmBBzSZVxQJSGlFKUaBVLx2gWR0CdUsKAavRrdX2UKGgGaAloD0MIopxoV6GzbUCUhpRSlGgVS8FoFkdAnVLfitJWenV9lChoBmgJaA9DCN2YnrCEe3FAlIaUUpRoFUvRaBZHQJ1S35eqrBF1fZQoaAZoCWgPQwippE5AE4hUQJSGlFKUaBVLjGgWR0CdUx1m8M/hdX2UKGgGaAloD0MIofKv5dXgcECUhpRSlGgVS+9oFkdAnVM6yGBWgnV9lChoBmgJaA9DCJFFmngH3G9AlIaUUpRoFUv1aBZHQJ1Tr67/XGx1fZQoaAZoCWgPQwiSyhRzEA5yQJSGlFKUaBVNDAFoFkdAnVQXNke6qnV9lChoBmgJaA9DCOAQqtRshG1AlIaUUpRoFU0mAWgWR0CdVCf8uSOjdX2UKGgGaAloD0MIZFsGnCW7cUCUhpRSlGgVS+JoFkdAnVTEbxVhkXV9lChoBmgJaA9DCChhpu3fUHFAlIaUUpRoFUvlaBZHQJ1VYTZg5R11fZQoaAZoCWgPQwgcsoF0cblzQJSGlFKUaBVL7WgWR0CdVbSs8xKydX2UKGgGaAloD0MInBVREz1ncECUhpRSlGgVS/toFkdAnVXI7muDBnV9lChoBmgJaA9DCD83NGUnNHFAlIaUUpRoFUvVaBZHQJ1V3TodMkB1fZQoaAZoCWgPQwhtq1lnfCJwQJSGlFKUaBVLzGgWR0CdVdVX3g1ndX2UKGgGaAloD0MIjEzAr1FqckCUhpRSlGgVS/9oFkdAnVcL7Gecx3V9lChoBmgJaA9DCAN9Ik/S0XBAlIaUUpRoFUvSaBZHQJ1Xo/JNj9Z1fZQoaAZoCWgPQwiWBn5Ug3dyQJSGlFKUaBVL4GgWR0CdV+EVFhG6dX2UKGgGaAloD0MIpUkp6PYbcUCUhpRSlGgVS+BoFkdAnVf3buc+aHV9lChoBmgJaA9DCHgI46fxAG5AlIaUUpRoFUvbaBZHQJ1YNDfFaSt1fZQoaAZoCWgPQwg7qpog6rhvQJSGlFKUaBVLu2gWR0CdWEw0fozOdX2UKGgGaAloD0MIJ6H0hZA8cUCUhpRSlGgVS9BoFkdAnVhl6iTMaHV9lChoBmgJaA9DCMwqbAb4iHFAlIaUUpRoFUvNaBZHQJ1Yu++M6zV1fZQoaAZoCWgPQwhLHk/Lz8ZyQJSGlFKUaBVNAgFoFkdAnVjzUVi4KHV9lChoBmgJaA9DCLGJzFyg83JAlIaUUpRoFUvtaBZHQJ1aItqYZ2p1fZQoaAZoCWgPQwiqtTALbcRwQJSGlFKUaBVLzGgWR0CdWnudwvQGdX2UKGgGaAloD0MI9G3BUl1LcUCUhpRSlGgVS95oFkdAnVrYYNy5qnV9lChoBmgJaA9DCPTDCOFRw3FAlIaUUpRoFUvnaBZHQJ1bMg/1QIl1fZQoaAZoCWgPQwjuJ2N8mIBvQJSGlFKUaBVL52gWR0CdW0hkiD/VdX2UKGgGaAloD0MIbCOe7OapcUCUhpRSlGgVTQEBaBZHQJ1bZtgrpaB1fZQoaAZoCWgPQwijO4idKbJxQJSGlFKUaBVNCANoFkdAnVy/5k9U0nV9lChoBmgJaA9DCFKeeTms83FAlIaUUpRoFUvwaBZHQJ1c1Hz6JqJ1fZQoaAZoCWgPQwhOt+wQvwVxQJSGlFKUaBVLzmgWR0CdXNweNkvsdX2UKGgGaAloD0MIVBnG3SAkUkCUhpRSlGgVS6hoFkdAnVzhvR7Z4HV9lChoBmgJaA9DCGuBPSbS9nBAlIaUUpRoFUvCaBZHQJ1dBQ1rIo51fZQoaAZoCWgPQwggXWxaaUZwQJSGlFKUaBVL4GgWR0CdXQ2tdRixdX2UKGgGaAloD0MIxsIQOX3Qc0CUhpRSlGgVS9NoFkdAnV1vsRg7YHV9lChoBmgJaA9DCA3EspkDoXFAlIaUUpRoFUv2aBZHQJ1dwsAeaKF1fZQoaAZoCWgPQwg3qWisfVJxQJSGlFKUaBVNAQFoFkdAnV4veYUnHHV9lChoBmgJaA9DCJhMFYwKDnJAlIaUUpRoFUvtaBZHQJ1edpeu3c51fZQoaAZoCWgPQwi4BOCf0lhwQJSGlFKUaBVL7mgWR0CdX4jgydnTdX2UKGgGaAloD0MIByRh3w5tc0CUhpRSlGgVS8NoFkdAnV+bsKLKm3V9lChoBmgJaA9DCEpGzsIedW9AlIaUUpRoFUvnaBZHQJ1fqQlruYx1fZQoaAZoCWgPQwhXfEPh83NxQJSGlFKUaBVL12gWR0CdX+qtYB/7dX2UKGgGaAloD0MIvRqgNNQscECUhpRSlGgVS+ZoFkdAnWAlabF0gnV9lChoBmgJaA9DCNQnucNmeXBAlIaUUpRoFUvYaBZHQJ1haF8G9pR1fZQoaAZoCWgPQwhGXtbEAutxQJSGlFKUaBVL22gWR0CdYYuNgjQidX2UKGgGaAloD0MIfCqnPSUTcUCUhpRSlGgVS9loFkdAnWGgZn+Q2nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (223 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 284.8248792231158, "std_reward": 13.269300505732733, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T12:49:45.966441"}
|