rahulvk007 commited on
Commit
908fa76
·
verified ·
1 Parent(s): c2ceb04

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -156
README.md CHANGED
@@ -1,200 +1,98 @@
1
  ---
2
  library_name: transformers
3
  tags:
4
- - llama-factory
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
 
 
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
 
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
  ## Uses
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
  ### Direct Use
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
 
53
  ### Out-of-Scope Use
54
 
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
 
59
  ## Bias, Risks, and Limitations
60
 
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
 
65
  ### Recommendations
66
 
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
 
71
  ## How to Get Started with the Model
72
 
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
 
112
- <!-- This should link to a Dataset Card if possible. -->
113
 
114
- [More Information Needed]
 
 
115
 
116
- #### Factors
117
 
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
119
 
120
- [More Information Needed]
121
 
122
- #### Metrics
123
 
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
125
 
126
- [More Information Needed]
127
 
128
- ### Results
129
 
130
- [More Information Needed]
 
 
 
 
 
 
 
 
131
 
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
 
198
- ## Model Card Contact
199
 
200
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
  tags:
4
+ - dockerllama
5
+ - docker
6
+ - nlp
7
+ - command-generation
8
+ license: llama3.2
9
+ datasets:
10
+ - MattCoddity/dockerNLcommands
11
+ language:
12
+ - en
13
+ base_model:
14
+ - meta-llama/Llama-3.2-1B
15
  ---
16
 
17
+ # Model Card for DockerLlama
 
 
 
18
 
19
+ DockerLlama is a Transformers model designed to interpret natural language queries and generate Docker commands. This model facilitates quick and easy command generation for Docker operations, making it ideal for users who want to interact with Docker without memorizing command syntax.
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ DockerLlama, developed as a command-generation model, translates user requests into precise Docker commands. It supports use cases like querying the health of containers, creating networks, and managing Docker resources. DockerLlama is particularly useful for DevOps engineers, software developers, and IT professionals working with containerized applications.
 
 
26
 
27
+ - **Developed by:** [rahulvk007](https://www.rahulvk.com)
28
+ - **Model type:** Language Model fine-tuned for Docker command generation
29
+ - **Language(s):** English (NLP for Docker commands)
30
+ - **License:** llama3.2
31
+ - **Finetuned from model:** meta-llama/Llama-3.2-1B
 
 
32
 
33
+ ### Model Sources
34
 
35
+ - **Repository:** [DockerLlama on Hugging Face Hub](https://huggingface.co/rahulvk007/dockerllama)
36
+ - **Dataset:** [MattCoddity/dockerNLcommands](https://huggingface.co/datasets/MattCoddity/dockerNLcommands)
 
 
 
37
 
38
  ## Uses
39
 
 
 
40
  ### Direct Use
41
 
42
+ DockerLlama is used directly to translate natural language queries into Docker commands. For example, "Give me a list of running containers that are healthy" would be translated into ```docker ps --filter 'status=running' --filter 'health=healthy'``` command.
 
 
 
 
 
 
 
 
43
 
44
  ### Out-of-Scope Use
45
 
46
+ The model is not suited for general natural language tasks unrelated to Docker or for use cases outside of Docker command generation.
 
 
47
 
48
  ## Bias, Risks, and Limitations
49
 
50
+ DockerLlama is focused on Docker commands, so its performance on unrelated queries or commands not supported by Docker may produce incorrect or irrelevant responses.
 
 
51
 
52
  ### Recommendations
53
 
54
+ Users should verify the generated Docker commands before executing them to avoid unintended effects on their Docker environment.
 
 
55
 
56
  ## How to Get Started with the Model
57
 
58
+ To deploy the model locally, you can use VLLM. Here are some commands:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ **Command to deploy with VLLM:**
61
 
62
+ ```bash
63
+ docker run --runtime nvidia --gpus all -p 9000:8000 --ipc=host vllm/vllm-openai:latest --model rahulvk007/dockerllama
64
+ ```
65
 
66
+ If you have a low-memory machine with an older GPU (like GTX 1650), try this:
67
 
68
+ ```bash
69
+ docker run --gpus all -p 9000:8000 --ipc=host vllm/vllm-openai:latest --model rahulvk007/dockerllama --dtype=half --max-model-len=512
70
+ ```
71
 
72
+ ### Important Prompt Setup
73
 
74
+ Use the following system prompt to ensure the model translates queries accurately:
75
 
76
+ ```
77
+ translate this sentence in docker command
78
+ ```
79
 
80
+ **Example Request:**
81
 
82
+ To interact with the deployed model, make a POST request to `http://localhost:9000/v1/chat/completions` (change the endpoint to your deployment url) with the following payload:
83
 
84
+ ```json
85
+ {
86
+ "model": "rahulvk007/dockerllama",
87
+ "messages": [
88
+ {"role": "system", "content": "translate this sentence in docker command"},
89
+ {"role": "user", "content": "Give me a list of running containers that are healthy."}
90
+ ]
91
+ }
92
+ ```
93
 
94
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ ### Training Data
97
 
98
+ The model was fine-tuned using the dataset [MattCoddity/dockerNLcommands](https://huggingface.co/datasets/MattCoddity/dockerNLcommands), which includes natural language commands and their Docker command equivalents.