raihanpf22 commited on
Commit
18a682b
·
1 Parent(s): 63835cf

Upload config

Browse files
Files changed (1) hide show
  1. readme.md +112 -0
readme.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - id
4
+ license: cc-by-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - SQuAD-indonesian-language-(442-Context-Title)
8
+ thumbnail: null
9
+ tags:
10
+ - natural-language-processing
11
+ - qna
12
+ - chatbot
13
+ - bert
14
+ - Transformer
15
+ - NeMo
16
+ - pytorch
17
+ model-index:
18
+ - name: nlp_id_qa_bert_base_uncased
19
+ results: []
20
+
21
+ ---
22
+
23
+
24
+ ## Model Overview
25
+
26
+ This model was built using the NeMo Nvidia BERTQAModel, using the SQuAD v2.0 dataset in Indonesian.
27
+
28
+ ## NVIDIA NeMo: Training
29
+
30
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
31
+ ```
32
+ pip install nemo_toolkit['all']
33
+ ```
34
+
35
+ ## How to Use this Model
36
+
37
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```python
42
+ import nemo.collections.nlp as model
43
+ model = nemo_nlp.models.question_answering.qa_bert_model.BERTQAModel.from_pretrained("raihanpf22/nlp_id_qa_bert_base_uncased")
44
+ ```
45
+
46
+ ### Transcribing using Python
47
+
48
+ Simply do:
49
+ ```
50
+ eval_device = [config.trainer.devices[0]] if isinstance(config.trainer.devices, list) else 1
51
+ model.trainer = pl.Trainer(
52
+ devices=eval_device,
53
+ accelerator=config.trainer.accelerator,
54
+ precision=16,
55
+ logger=False,
56
+ )
57
+
58
+ config.exp_manager.create_checkpoint_callback = False
59
+ exp_dir = exp_manager(model.trainer, config.exp_manager)
60
+ output_nbest_file = os.path.join(exp_dir, "output_nbest_file.json")
61
+ output_prediction_file = os.path.join(exp_dir, "output_prediction_file.json")
62
+
63
+ all_preds, all_nbest = model.inference(
64
+ "questions.json",
65
+ output_prediction_file=output_prediction_file,
66
+ output_nbest_file=output_nbest_file,
67
+ num_samples=-1, # setting to -1 will use all samples for inference
68
+ )
69
+
70
+ for question_id in all_preds:
71
+ print(all_preds[question_id])
72
+ ```
73
+
74
+ ### Input
75
+
76
+ This model accepts SQuAD Format v2.0 as input.
77
+
78
+ ### Output
79
+
80
+ This model provides output in the form of answers to questions according to the existing context.
81
+
82
+ ## Model Architecture
83
+
84
+ Using an uncased BERT base architecture model.
85
+
86
+ ## Training
87
+
88
+ 50 Epochs, 8 Batch size per GPU, 1 num_layer
89
+
90
+ ### Datasets
91
+
92
+ using SQuAD v2.0 as train data
93
+
94
+ ## Performance
95
+
96
+ test_HasAns_exact = 98.0
97
+ test_HasAns_f1 = 98.0465087890625
98
+ test_HasAns_total = 100.0
99
+ test_NoAns_exact = 0.0
100
+ test_NoAns_f1 = 0.0
101
+ test_NoAns_total = 0.0
102
+ test_exact = 98.0
103
+ test_f1 = 98.0465087890625
104
+ test_loss = 0.00019806227646768093
105
+ test_total = 100.0
106
+
107
+ ## References
108
+
109
+ <ADD ANY REFERENCES HERE AS NEEDED>
110
+
111
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
112
+