rail-berkeley
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: robotics
|
4 |
+
---
|
5 |
+
# Octo Base
|
6 |
+
|
7 |
+
See https://github.com/octo-models/octo for instructions for using this model.
|
8 |
+
|
9 |
+
Octo Base is trained with a window size of 2, predicting 7-dimensional actions 4 steps into the future using a diffusion policy. The model is a Transformer with 93M parameters (equivalent to a ViT-B). Images are tokenized by preprocessing with a lightweight convolutional encoder, then grouped into 16x16 patches. Language is tokenized by applying the T5 tokenizer, and then applying the T5-Base language encoder.
|
10 |
+
|
11 |
+
Observations and tasks conform to the following spec:
|
12 |
+
|
13 |
+
Observations:
|
14 |
+
|
15 |
+
```
|
16 |
+
{
|
17 |
+
image_primary: ('batch', 'history_window', 256, 256, 3),
|
18 |
+
image_wrist: ('batch', 'history_window', 128, 128, 3),
|
19 |
+
}
|
20 |
+
```
|
21 |
+
|
22 |
+
Tasks:
|
23 |
+
```
|
24 |
+
{
|
25 |
+
image_primary: ('batch', 256, 256, 3),
|
26 |
+
image_wrist: ('batch', 128, 128, 3),
|
27 |
+
language_instruction: {
|
28 |
+
attention_mask: ('batch', 16),
|
29 |
+
input_ids: ('batch', 16),
|
30 |
+
},
|
31 |
+
}
|
32 |
+
```
|
33 |
+
|
34 |
+
At inference, you may pass in any subset of these observation and task keys, with a history window up to 2 timesteps.
|
35 |
+
|
36 |
+
|
37 |
+
This model was trained on a mix of datasets from the Open X-Embodiment dataset.
|
38 |
+
|
39 |
+
| Dataset | Proportion of batch |
|
40 |
+
|------------------------------------------------------------|---------------------|
|
41 |
+
| Fractal (Brohan et al, 2022) | 17.0\% |
|
42 |
+
| Kuka (Kalashnikov et al, 2018) | 17.0\% |
|
43 |
+
| Bridge (Walke et al, 2023) | 17.0\% |
|
44 |
+
| BC-Z (Jang et al, 2022) | 9.1\% |
|
45 |
+
| Stanford Hydra Dataset (Belkhale et al, 2023) | 6.0\% |
|
46 |
+
| Language Table~ (Lynch et al, 2023) | 5.9\% |
|
47 |
+
| Taco Play (Rosete-Beas et al, 2022, Mees et al., 2023) | 3.6\% |
|
48 |
+
| Furniture Bench Dataset (Heo et al, 2023) | 3.3\% |
|
49 |
+
| UTAustin Mutex (Shah et al, 2023) | 3.0\% |
|
50 |
+
| Austin Sailor Dataset (Nasiriany et al, 2022) | 2.9\% |
|
51 |
+
| Roboturk (Mandlekar et al, 2018) | 2.8\% |
|
52 |
+
| Toto (Zhou et al, 2023) | 2.4\% |
|
53 |
+
| Austin Sirius Dataset (Liu et al, 2023) | 2.3\% |
|
54 |
+
| Berkeley Autolab UR5 (Chen et al) | 1.5\% |
|
55 |
+
| IAMLab CMU Pickup Insert (Saxena et al, 2023) | 1.2\% |
|
56 |
+
| Viola (Zhu et al, 2023) | 1.2\% |
|
57 |
+
| Berkeley Fanuc Manipulation (Zhu et al, 2023) | 1.0\% |
|
58 |
+
| NYU Franka Play Dataset (Cui et al, 2022) | 0.9\% |
|
59 |
+
| UCSD Kitchen Dataset (Ge Yan and Wang, 2023) | <0.1\% |
|
60 |
+
| Jaco Play (Dass et al, 2023) | 0.6\% |
|
61 |
+
| Berkeley Cable Routing (Luo et al, 2023) | 0.3\% |
|
62 |
+
| Austin Buds Dataset (Zhu et al, 2022) | 0.3\% |
|
63 |
+
| CMU Stretch (Mendonca et al, 2023) | 0.2\% |
|
64 |
+
| NYU Door Opening (Pari et al, 2021) | 0.1\% |
|
65 |
+
| DLR EDAN Shared Control (Quere et al, 2020) | 0.1\% |
|
66 |
+
|
67 |
+
# Updates for Version 1.5
|
68 |
+
- Language task tokens are now repeated at every timestep in the context window.
|
69 |
+
- Augmented the language instructions in the data with rephrasings from GPT-3.5.
|
70 |
+
- Bug fixes:
|
71 |
+
- Turned off dropout in the diffusion head due to incompatibility with layer norm.
|
72 |
+
- Fixed an off-by-one error with the attention mask.
|
73 |
+
- Fixed an issue where different image augmentations did not get fresh random seeds.
|