rajevan123
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
base_model: dslim/bert-base-NER
|
9 |
+
model-index:
|
10 |
+
- name: STS-Lora-Fine-Tuning-Capstone-bert-testing-42-with-lower-r-mid
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# STS-Lora-Fine-Tuning-Capstone-bert-testing-42-with-lower-r-mid
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.4126
|
22 |
+
- Accuracy: 0.4199
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 64
|
43 |
+
- eval_batch_size: 64
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 40
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 90 | 1.7527 | 0.2429 |
|
54 |
+
| No log | 2.0 | 180 | 1.7436 | 0.2429 |
|
55 |
+
| No log | 3.0 | 270 | 1.7371 | 0.2429 |
|
56 |
+
| No log | 4.0 | 360 | 1.7268 | 0.2444 |
|
57 |
+
| No log | 5.0 | 450 | 1.7015 | 0.2973 |
|
58 |
+
| 1.6932 | 6.0 | 540 | 1.6853 | 0.2886 |
|
59 |
+
| 1.6932 | 7.0 | 630 | 1.6676 | 0.2922 |
|
60 |
+
| 1.6932 | 8.0 | 720 | 1.6423 | 0.3089 |
|
61 |
+
| 1.6932 | 9.0 | 810 | 1.6182 | 0.3191 |
|
62 |
+
| 1.6932 | 10.0 | 900 | 1.5953 | 0.3241 |
|
63 |
+
| 1.6932 | 11.0 | 990 | 1.5797 | 0.3256 |
|
64 |
+
| 1.5883 | 12.0 | 1080 | 1.5590 | 0.3358 |
|
65 |
+
| 1.5883 | 13.0 | 1170 | 1.5306 | 0.3539 |
|
66 |
+
| 1.5883 | 14.0 | 1260 | 1.5157 | 0.3561 |
|
67 |
+
| 1.5883 | 15.0 | 1350 | 1.4990 | 0.3604 |
|
68 |
+
| 1.5883 | 16.0 | 1440 | 1.4944 | 0.3611 |
|
69 |
+
| 1.4756 | 17.0 | 1530 | 1.4822 | 0.3698 |
|
70 |
+
| 1.4756 | 18.0 | 1620 | 1.4731 | 0.3735 |
|
71 |
+
| 1.4756 | 19.0 | 1710 | 1.4655 | 0.3756 |
|
72 |
+
| 1.4756 | 20.0 | 1800 | 1.4603 | 0.3778 |
|
73 |
+
| 1.4756 | 21.0 | 1890 | 1.4552 | 0.3974 |
|
74 |
+
| 1.4756 | 22.0 | 1980 | 1.4478 | 0.3930 |
|
75 |
+
| 1.4113 | 23.0 | 2070 | 1.4439 | 0.3901 |
|
76 |
+
| 1.4113 | 24.0 | 2160 | 1.4417 | 0.3930 |
|
77 |
+
| 1.4113 | 25.0 | 2250 | 1.4359 | 0.4075 |
|
78 |
+
| 1.4113 | 26.0 | 2340 | 1.4316 | 0.4126 |
|
79 |
+
| 1.4113 | 27.0 | 2430 | 1.4300 | 0.4061 |
|
80 |
+
| 1.3841 | 28.0 | 2520 | 1.4258 | 0.4141 |
|
81 |
+
| 1.3841 | 29.0 | 2610 | 1.4237 | 0.4162 |
|
82 |
+
| 1.3841 | 30.0 | 2700 | 1.4218 | 0.4133 |
|
83 |
+
| 1.3841 | 31.0 | 2790 | 1.4205 | 0.4213 |
|
84 |
+
| 1.3841 | 32.0 | 2880 | 1.4189 | 0.4133 |
|
85 |
+
| 1.3841 | 33.0 | 2970 | 1.4173 | 0.4162 |
|
86 |
+
| 1.3682 | 34.0 | 3060 | 1.4159 | 0.4220 |
|
87 |
+
| 1.3682 | 35.0 | 3150 | 1.4146 | 0.4199 |
|
88 |
+
| 1.3682 | 36.0 | 3240 | 1.4142 | 0.4213 |
|
89 |
+
| 1.3682 | 37.0 | 3330 | 1.4134 | 0.4213 |
|
90 |
+
| 1.3682 | 38.0 | 3420 | 1.4129 | 0.4199 |
|
91 |
+
| 1.3612 | 39.0 | 3510 | 1.4127 | 0.4184 |
|
92 |
+
| 1.3612 | 40.0 | 3600 | 1.4126 | 0.4199 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- PEFT 0.10.0
|
98 |
+
- Transformers 4.38.2
|
99 |
+
- Pytorch 2.2.1+cu121
|
100 |
+
- Datasets 2.18.0
|
101 |
+
- Tokenizers 0.15.2
|