File size: 2,131 Bytes
748ac9b 2127d3e ffb8cc9 748ac9b 68c125e 748ac9b ffb8cc9 748ac9b ffb8cc9 748ac9b ffb8cc9 748ac9b ffb8cc9 748ac9b ffb8cc9 748ac9b ffb8cc9 748ac9b 68c125e 748ac9b 2127d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language:
- en
tags:
- text-to-sql
- gpt2
- gpt2-medium
- nlp-to-sql
- text2sql
- sql
datasets:
- b-mc2/sql-create-context
license: other
---
# Model Card
<!-- The base model used for training is gpt2-medium. We finetuned it on the following dataset: b-mc2/sql-create-context -->
This is my first fine tuned LLM project.
## Usage
```
from transformers import GPT2LMHeadModel, GPT2Tokenizer
finetunedGPT = GPT2LMHeadModel.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
finetunedTokenizer = GPT2Tokenizer.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
def generate_text_to_sql(query, model, tokenizer, max_length=256):
prompt = f"Translate the following English question to SQL: {query}"
input_tensor = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
output = model.generate(input_tensor, max_length=max_length, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
# Return only the SQL part (removing the input text)
sql_output = decoded_output[len(prompt):].strip()
return sql_output
queryList = ["I need a list of employees who joined in the company last 6 months with a salary hike of 30% ",
"Give me loginid,status,company of a user who is mapped to the organization XYZ "]
for query in queryList:
sql_result = generate_text_to_sql(query, finetunedGPT, finetunedTokenizer)
print(sql_result,"\n")
```
### Output
SELECT COUNT(*) FROM employees WHERE last_6_months = "6 months" AND salary_hike = "30%" \
SELECT loginid,status,company FROM user_mapped_to_organization WHERE mapping = "XYZ"
#### Training Hyperparameters
num_train_epochs=1 \
per_device_train_batch_size=3 \
gradient_accumulation_steps=9 \
learning_rate=5e-5 \
weight_decay=0.01
## Evaluation
| Step | Training Loss |
| -------- | ------- |
| 500 | 0.337800 |
| 1000 | 0.262900 |
| 1500 | 0.253200 |
| 2000 | 0.246400 |
{'eval_loss': 0.23689331114292145, 'eval_runtime': 104.4102, 'eval_samples_per_second': 67.043, 'eval_steps_per_second': 8.38, 'epoch': 1.0} |