create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from sklearn.preprocessing import MinMaxScaler
|
6 |
+
|
7 |
+
# Load the saved model
|
8 |
+
model = load_model('lstm_model')
|
9 |
+
|
10 |
+
# Dummy scaler (replace this with the actual scaler used in training)
|
11 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
12 |
+
|
13 |
+
# Function for Prediction
|
14 |
+
def predict_sales(input_data):
|
15 |
+
# Reshape and scale input data
|
16 |
+
input_data = np.array(input_data).reshape(1, 30, 1)
|
17 |
+
scaled_input = scaler.transform(input_data)
|
18 |
+
|
19 |
+
# Predict
|
20 |
+
prediction = model.predict(scaled_input)
|
21 |
+
actual_prediction = scaler.inverse_transform(prediction)
|
22 |
+
|
23 |
+
return actual_prediction[0][0]
|
24 |
+
|
25 |
+
# Gradio Interface
|
26 |
+
inputs = gr.inputs.Dataframe(headers=["Sales"], type="numpy", row_count=30, col_count=1)
|
27 |
+
outputs = gr.outputs.Textbox()
|
28 |
+
|
29 |
+
interface = gr.Interface(fn=predict_sales, inputs=inputs, outputs=outputs, title="LSTM Sales Forecasting")
|
30 |
+
interface.launch()
|