File size: 2,297 Bytes
c73b977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: xsum
      type: xsum
      config: default
      split: validation
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 26.2006
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6282
- Rouge1: 26.2006
- Rouge2: 6.4986
- Rougel: 20.4525
- Rougelsum: 20.4233
- Gen Len: 18.791

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 3.0796        | 1.0   | 500  | 2.6971          | 23.5102 | 5.0088 | 18.4369 | 18.4317   | 18.719  |
| 2.8953        | 2.0   | 1000 | 2.6563          | 25.1823 | 5.9526 | 19.6696 | 19.6505   | 18.779  |
| 2.8527        | 3.0   | 1500 | 2.6393          | 25.7775 | 6.2129 | 20.1822 | 20.1652   | 18.79   |
| 2.8301        | 4.0   | 2000 | 2.6307          | 25.899  | 6.2538 | 20.2373 | 20.222    | 18.802  |
| 2.8158        | 5.0   | 2500 | 2.6282          | 26.2006 | 6.4986 | 20.4525 | 20.4233   | 18.791  |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1