File size: 1,393 Bytes
b917e3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479faae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae8f00
479faae
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
language: 
  - en

tags:
- token-classification
- text-classification
- question-answering
- text2text-generation
- text-generation

datasets:
- pubmed
- pmc/open_access
---

# SciFive Pubmed+PMC Base

## Introduction
Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598)

Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_

## How to use
For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). 
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed_PMC")  
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed_PMC")

sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ."
text =  sentence + "</s>"

encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")

outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)

for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)
```