File size: 1,393 Bytes
b917e3d 479faae 3ae8f00 479faae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- en
tags:
- token-classification
- text-classification
- question-answering
- text2text-generation
- text-generation
datasets:
- pubmed
- pmc/open_access
---
# SciFive Pubmed+PMC Base
## Introduction
Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598)
Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_
## How to use
For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive).
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed_PMC")
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed_PMC")
sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ."
text = sentence + "</s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
``` |