update model card README.md
Browse files
README.md
CHANGED
@@ -1,26 +1,78 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
# [TETIS](https://www.umr-tetis.fr) @ [Challenge TextMine 2024](https://textmine.sciencesconf.org/resource/page/id/9)
|
5 |
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
---
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|----------------------|
|
17 |
-
| Rémy Decoupes |
|
18 |
-
| Roberto Interdonato |
|
19 |
-
| Rodrique Kafando |
|
20 |
-
| Mehtab Syed Alam |
|
21 |
-
| Maguelonne Teisseire |
|
22 |
-
| Mathieu Roche |
|
23 |
-
| Sarah Valentin |
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: tetis-textmine-2024-camembert-large-based
|
11 |
+
results: []
|
12 |
---
|
|
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
# tetis-textmine-2024-camembert-large-based
|
|
|
18 |
|
19 |
+
This model is a fine-tuned version of [camembert/camembert-large](https://huggingface.co/camembert/camembert-large) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1106
|
22 |
+
- Precision: 0.9327
|
23 |
+
- Recall: 0.9471
|
24 |
+
- F1: 0.9398
|
25 |
+
- Accuracy: 0.9843
|
26 |
+
- Aucun F1: 0.9434
|
27 |
+
- Geogfeat F1: 0.9193
|
28 |
+
- Geogfeat geogname F1: 0.9554
|
29 |
+
- Geogname F1: 0.9133
|
30 |
+
- Name geogname F1: 0.9519
|
31 |
|
32 |
+
## Model description
|
33 |
|
34 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 2e-05
|
50 |
+
- train_batch_size: 8
|
51 |
+
- eval_batch_size: 8
|
52 |
+
- seed: 42
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Aucun F1 | Geogfeat F1 | Geogfeat geogname F1 | Geogname F1 | Name geogname F1 |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:--------:|:-----------:|:--------------------:|:-----------:|:----------------:|
|
61 |
+
| No log | 1.0 | 192 | 0.1045 | 0.9171 | 0.9369 | 0.9269 | 0.9828 | 0.9303 | 0.8943 | 0.9509 | 0.9174 | 0.9373 |
|
62 |
+
| No log | 2.0 | 384 | 0.1029 | 0.9223 | 0.9471 | 0.9345 | 0.9830 | 0.9339 | 0.9170 | 0.9522 | 0.9419 | 0.9377 |
|
63 |
+
| 0.0072 | 3.0 | 576 | 0.0952 | 0.9136 | 0.9466 | 0.9298 | 0.9840 | 0.9226 | 0.8993 | 0.9587 | 0.9440 | 0.9571 |
|
64 |
+
| 0.0072 | 4.0 | 768 | 0.1054 | 0.9347 | 0.9409 | 0.9378 | 0.9838 | 0.9380 | 0.9256 | 0.9603 | 0.9164 | 0.9433 |
|
65 |
+
| 0.0072 | 5.0 | 960 | 0.1165 | 0.9229 | 0.9347 | 0.9288 | 0.9814 | 0.9328 | 0.9013 | 0.9441 | 0.9060 | 0.9451 |
|
66 |
+
| 0.0071 | 6.0 | 1152 | 0.1070 | 0.9306 | 0.9462 | 0.9383 | 0.9840 | 0.9419 | 0.9144 | 0.9487 | 0.9213 | 0.9533 |
|
67 |
+
| 0.0071 | 7.0 | 1344 | 0.1037 | 0.9285 | 0.9453 | 0.9368 | 0.9844 | 0.9392 | 0.9100 | 0.9534 | 0.9271 | 0.9507 |
|
68 |
+
| 0.0013 | 8.0 | 1536 | 0.1127 | 0.9335 | 0.9475 | 0.9405 | 0.9841 | 0.9451 | 0.9175 | 0.9505 | 0.9222 | 0.9520 |
|
69 |
+
| 0.0013 | 9.0 | 1728 | 0.1110 | 0.9356 | 0.9488 | 0.9422 | 0.9849 | 0.9452 | 0.9195 | 0.9571 | 0.9186 | 0.9572 |
|
70 |
+
| 0.0013 | 10.0 | 1920 | 0.1106 | 0.9327 | 0.9471 | 0.9398 | 0.9843 | 0.9434 | 0.9193 | 0.9554 | 0.9133 | 0.9519 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
|
75 |
+
- Transformers 4.30.2
|
76 |
+
- Pytorch 2.0.1+cu117
|
77 |
+
- Datasets 2.13.0
|
78 |
+
- Tokenizers 0.13.3
|