a2c-PandaReachDense-v2 / config.json
rdesarz's picture
Initial commit
520ce4c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5d7983f4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5d798b8a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677334275271144037, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgfDbPnKeajshZAo/gfDbPnKeajshZAo/gfDbPnKeajshZAo/gfDbPnKeajshZAo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAszukPxD5jz9WKFq//4ygP4rkbb/OYSQ/74Y5P/8Iyz+Ac6Q/6NjXP2JSCz+9HJM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACB8Ns+cp5qOyFkCj88Yb09pfyOOQSUiD2B8Ns+cp5qOyFkCj88Yb09pfyOOQSUiD2B8Ns+cp5qOyFkCj88Yb09pfyOOQSUiD2B8Ns+cp5qOyFkCj88Yb09pfyOOQSUiD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42956927 0.00358 0.54059035]\n [0.42956927 0.00358 0.54059035]\n [0.42956927 0.00358 0.54059035]\n [0.42956927 0.00358 0.54059035]]", "desired_goal": "[[ 1.2830719 1.1247883 -0.852178 ]\n [ 1.2543029 -0.9292685 0.6421174 ]\n [ 0.7247152 1.586212 1.2847748 ]\n [ 1.686307 0.5442258 0.28732863]]", "observation": "[[4.2956927e-01 3.5800007e-03 5.4059035e-01 9.2470616e-02 2.7272585e-04\n 6.6688567e-02]\n [4.2956927e-01 3.5800007e-03 5.4059035e-01 9.2470616e-02 2.7272585e-04\n 6.6688567e-02]\n [4.2956927e-01 3.5800007e-03 5.4059035e-01 9.2470616e-02 2.7272585e-04\n 6.6688567e-02]\n [4.2956927e-01 3.5800007e-03 5.4059035e-01 9.2470616e-02 2.7272585e-04\n 6.6688567e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAF9IRvRdgB75SIFQ+pibQvFJcZrx6ihI++djOO5C4FL5a+QA+tL7iPdGRXbyEm5c+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03560075 -0.13220249 0.20715454]\n [-0.02540905 -0.0140601 0.14310637]\n [ 0.00631249 -0.1452353 0.1259512 ]\n [ 0.1107153 -0.01352353 0.29610837]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHbCryVNWAsCUhpRSlIwBbJRLMowBdJRHQKfyQwnpjc51fZQoaAZoCWgPQwhenPhqR3Hgv5SGlFKUaBVLMmgWR0Cn8dp6po9LdX2UKGgGaAloD0MINuohGt3B5b+UhpRSlGgVSzJoFkdAp/FseEIw/XV9lChoBmgJaA9DCOxoHOp34eO/lIaUUpRoFUsyaBZHQKfxCwiaAnV1fZQoaAZoCWgPQwgeh8H8FbLtv5SGlFKUaBVLMmgWR0Cn838ZccENdX2UKGgGaAloD0MI1esWgbG+8L+UhpRSlGgVSzJoFkdAp/MWnn+yaHV9lChoBmgJaA9DCI1feCXJ8/C/lIaUUpRoFUsyaBZHQKfyqS+QEIR1fZQoaAZoCWgPQwikG2FREWfwv5SGlFKUaBVLMmgWR0Cn8kf5k9U0dX2UKGgGaAloD0MIrWpJRzmY8L+UhpRSlGgVSzJoFkdAp/SbKJVKgHV9lChoBmgJaA9DCMqpnWFq6wDAlIaUUpRoFUsyaBZHQKf0M580DU51fZQoaAZoCWgPQwjye5v+7Mf3v5SGlFKUaBVLMmgWR0Cn88ah6By0dX2UKGgGaAloD0MI4Nv0Zz/S+r+UhpRSlGgVSzJoFkdAp/Nl/rjYI3V9lChoBmgJaA9DCPeUnBN7qAPAlIaUUpRoFUsyaBZHQKf2TtMwlB11fZQoaAZoCWgPQwg+XkiHhzD8v5SGlFKUaBVLMmgWR0Cn9ecEvCdjdX2UKGgGaAloD0MIaqZ7ndRX8L+UhpRSlGgVSzJoFkdAp/V5jJ+2E3V9lChoBmgJaA9DCIhjXdxGQ/C/lIaUUpRoFUsyaBZHQKf1GN/e+Eh1fZQoaAZoCWgPQwgLfbCMDV36v5SGlFKUaBVLMmgWR0Cn+AdDx9XtdX2UKGgGaAloD0MIhjqscMsH8b+UhpRSlGgVSzJoFkdAp/eftpmEoXV9lChoBmgJaA9DCBqjdVQ1gfq/lIaUUpRoFUsyaBZHQKf3MpgkTpR1fZQoaAZoCWgPQwjo2EElrmPsv5SGlFKUaBVLMmgWR0Cn9tIFV1fWdX2UKGgGaAloD0MIpBr2e2Ld8r+UhpRSlGgVSzJoFkdAp/oL987ZF3V9lChoBmgJaA9DCDXQfM7dLuu/lIaUUpRoFUsyaBZHQKf5pB2OhkB1fZQoaAZoCWgPQwg0Tdh+Mkb+v5SGlFKUaBVLMmgWR0Cn+TcnVoYfdX2UKGgGaAloD0MI8BezJaui6L+UhpRSlGgVSzJoFkdAp/jYPK+zt3V9lChoBmgJaA9DCLg/Fw0ZD/G/lIaUUpRoFUsyaBZHQKf73xJ/XoV1fZQoaAZoCWgPQwi+a9CX3j74v5SGlFKUaBVLMmgWR0Cn+3eY2Kl6dX2UKGgGaAloD0MIrDlAMEcP8r+UhpRSlGgVSzJoFkdAp/sKk2xY73V9lChoBmgJaA9DCDKOkewRigXAlIaUUpRoFUsyaBZHQKf6qpKjBVN1fZQoaAZoCWgPQwh+5UF6ihzov5SGlFKUaBVLMmgWR0Cn/XZM10kodX2UKGgGaAloD0MIDycwndZtA8CUhpRSlGgVSzJoFkdAp/0Nzjm0V3V9lChoBmgJaA9DCNmTwOYcPO6/lIaUUpRoFUsyaBZHQKf8n6a9bot1fZQoaAZoCWgPQwjQtwVLdUHyv5SGlFKUaBVLMmgWR0Cn/D51V5rydX2UKGgGaAloD0MIVhADXfuC4L+UhpRSlGgVSzJoFkdAp/6F+d9Uj3V9lChoBmgJaA9DCGQfZFkwMfO/lIaUUpRoFUsyaBZHQKf+HW8RL9N1fZQoaAZoCWgPQwiwARHiyhnwv5SGlFKUaBVLMmgWR0Cn/a9fTkQxdX2UKGgGaAloD0MIysUYWMdx6r+UhpRSlGgVSzJoFkdAp/1OGwiaAnV9lChoBmgJaA9DCM9oq5LIPuC/lIaUUpRoFUsyaBZHQKf/gMLF4s51fZQoaAZoCWgPQwhPyqSGNgDuv5SGlFKUaBVLMmgWR0Cn/xgI6bONdX2UKGgGaAloD0MIiA/s+C8Q6r+UhpRSlGgVSzJoFkdAp/6qEi+tbXV9lChoBmgJaA9DCPd0dcdiG/i/lIaUUpRoFUsyaBZHQKf+SOby6MB1fZQoaAZoCWgPQwhRvwtbs9X8v5SGlFKUaBVLMmgWR0CoAISKekHldX2UKGgGaAloD0MIZY16iEZ36b+UhpRSlGgVSzJoFkdAqAAb+717IHV9lChoBmgJaA9DCNPYXgt6b+e/lIaUUpRoFUsyaBZHQKf/reeFtbd1fZQoaAZoCWgPQwhRMGMK1vjxv5SGlFKUaBVLMmgWR0Cn/0yJ0nw5dX2UKGgGaAloD0MIQnv18dD35b+UhpRSlGgVSzJoFkdAqAGBlxwQ2HV9lChoBmgJaA9DCGVwlLw6x+C/lIaUUpRoFUsyaBZHQKgBGPcSGrV1fZQoaAZoCWgPQwhGmngHeNLfv5SGlFKUaBVLMmgWR0CoAKrCvX9SdX2UKGgGaAloD0MI63Hfap14+L+UhpRSlGgVSzJoFkdAqABJh+fAbnV9lChoBmgJaA9DCBtjJ7wEp+6/lIaUUpRoFUsyaBZHQKgCiFaB7NV1fZQoaAZoCWgPQwhQUmABTBnfv5SGlFKUaBVLMmgWR0CoAh+mvW6LdX2UKGgGaAloD0MI+gs9YvTc37+UhpRSlGgVSzJoFkdAqAGxbILgGnV9lChoBmgJaA9DCBeBsb6ByfG/lIaUUpRoFUsyaBZHQKgBUC2+fyx1fZQoaAZoCWgPQwi/8iA9RY74v5SGlFKUaBVLMmgWR0CoA4oJZ4fPdX2UKGgGaAloD0MIuvYF9MLd8b+UhpRSlGgVSzJoFkdAqAMhoTPBznV9lChoBmgJaA9DCOAtkKD4MfG/lIaUUpRoFUsyaBZHQKgCs7bL2Yh1fZQoaAZoCWgPQwiwARHiytnlv5SGlFKUaBVLMmgWR0CoAlKLCN0edX2UKGgGaAloD0MIWKg1zTtO6b+UhpRSlGgVSzJoFkdAqASW4kNWl3V9lChoBmgJaA9DCPZFQlvOpe6/lIaUUpRoFUsyaBZHQKgELmhdt2t1fZQoaAZoCWgPQwjmQA+1bRjwv5SGlFKUaBVLMmgWR0CoA8BUrCm/dX2UKGgGaAloD0MIkgThCijU9b+UhpRSlGgVSzJoFkdAqANfJxNqQHV9lChoBmgJaA9DCOC8OPHVjta/lIaUUpRoFUsyaBZHQKgFk/1xsEd1fZQoaAZoCWgPQwiTHoZWJ2fnv5SGlFKUaBVLMmgWR0CoBStfG+9KdX2UKGgGaAloD0MICOdTxyql2b+UhpRSlGgVSzJoFkdAqAS9INEw4HV9lChoBmgJaA9DCLuaPGU13ee/lIaUUpRoFUsyaBZHQKgEW6dUbUB1fZQoaAZoCWgPQwgMWHIVi9/fv5SGlFKUaBVLMmgWR0CoBpn8baRIdX2UKGgGaAloD0MIFMyYgjVO7b+UhpRSlGgVSzJoFkdAqAYxbGFSKnV9lChoBmgJaA9DCB/bMuAsJeq/lIaUUpRoFUsyaBZHQKgFw1UlzEJ1fZQoaAZoCWgPQwgg0QSKWAQAwJSGlFKUaBVLMmgWR0CoBWHktEofdX2UKGgGaAloD0MIoPtyZrvC57+UhpRSlGgVSzJoFkdAqAel/QSi/XV9lChoBmgJaA9DCDvkZrgB3/O/lIaUUpRoFUsyaBZHQKgHPkQwsXl1fZQoaAZoCWgPQwhWLekoBzPhv5SGlFKUaBVLMmgWR0CoBtBVuJk5dX2UKGgGaAloD0MIstXllICY7r+UhpRSlGgVSzJoFkdAqAZvN9ph4XV9lChoBmgJaA9DCOFgb2JITti/lIaUUpRoFUsyaBZHQKgIvulXRw91fZQoaAZoCWgPQwhZ+zvbo7fuv5SGlFKUaBVLMmgWR0CoCFaAWi1zdX2UKGgGaAloD0MIH9rHCn6b8b+UhpRSlGgVSzJoFkdAqAfomVqveXV9lChoBmgJaA9DCM+j4v+OKPC/lIaUUpRoFUsyaBZHQKgHh27nPmh1fZQoaAZoCWgPQwjNlUG1wYncv5SGlFKUaBVLMmgWR0CoCcPsAvL6dX2UKGgGaAloD0MIQYF38umx17+UhpRSlGgVSzJoFkdAqAlbMA3kxXV9lChoBmgJaA9DCKDiOPBqudq/lIaUUpRoFUsyaBZHQKgI7S9du511fZQoaAZoCWgPQwhdiqvKvqvwv5SGlFKUaBVLMmgWR0CoCIveHi3odX2UKGgGaAloD0MIgQncupsn67+UhpRSlGgVSzJoFkdAqArLQAuIynV9lChoBmgJaA9DCEWduYeEb/a/lIaUUpRoFUsyaBZHQKgKYmqo60Z1fZQoaAZoCWgPQwgJ+aBns2rjv5SGlFKUaBVLMmgWR0CoCfRxtHhCdX2UKGgGaAloD0MIX3r7c9GQ7b+UhpRSlGgVSzJoFkdAqAmTAckt3HV9lChoBmgJaA9DCD/+0qI+ydm/lIaUUpRoFUsyaBZHQKgLzJT2nKp1fZQoaAZoCWgPQwiv7e2W5IDsv5SGlFKUaBVLMmgWR0CoC2QcPvrodX2UKGgGaAloD0MImfT3UnjQ17+UhpRSlGgVSzJoFkdAqAr2JcgQpXV9lChoBmgJaA9DCI4+5gMCnfG/lIaUUpRoFUsyaBZHQKgKlMnqmj11fZQoaAZoCWgPQwjXFp6Xig32v5SGlFKUaBVLMmgWR0CoDMroW56MdX2UKGgGaAloD0MIRBfUt8zp57+UhpRSlGgVSzJoFkdAqAxiOearm3V9lChoBmgJaA9DCJc2HJYGvvC/lIaUUpRoFUsyaBZHQKgL9F/hESd1fZQoaAZoCWgPQwjE7dCwGPXkv5SGlFKUaBVLMmgWR0CoC5L5ylvZdX2UKGgGaAloD0MI48PsZdtp1L+UhpRSlGgVSzJoFkdAqA3MLjPv8nV9lChoBmgJaA9DCKn3VE57yvC/lIaUUpRoFUsyaBZHQKgNY2d/axp1fZQoaAZoCWgPQwgiiPNwAtPmv5SGlFKUaBVLMmgWR0CoDPVWKdhBdX2UKGgGaAloD0MIDECjdOmf8L+UhpRSlGgVSzJoFkdAqAyT+WGATnV9lChoBmgJaA9DCOxMofMau+m/lIaUUpRoFUsyaBZHQKgOyGxD9fl1fZQoaAZoCWgPQwgicCTQYFPVv5SGlFKUaBVLMmgWR0CoDl/j0cwQdX2UKGgGaAloD0MIYDqt26B28L+UhpRSlGgVSzJoFkdAqA3xufmLcnV9lChoBmgJaA9DCI24ADRKV/m/lIaUUpRoFUsyaBZHQKgNkFSsKb91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}