rdesarz's picture
Try PPO algorithm
b8cb891
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b8934dd30>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b8934ddc0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b8934de50>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b8934dee0>",
"_build": "<function ActorCriticPolicy._build at 0x7f5b8934df70>",
"forward": "<function ActorCriticPolicy.forward at 0x7f5b89351040>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b893510d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b89351160>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f5b893511f0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b89351280>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b89351310>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b893513a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f5b89347cf0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1676726095192916394,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADMtrwpKF66/QsnuHdVJrOalDe6CFRENwAAgD8AAIA/U90TvvbnRzsLnBe65/xCN64v9rwzTjs5AACAPwAAgD9zHf+9vGMSP/DAZj16D5K+QNUWPQ4IlbsAAAAAAAAAAJqlvb1Iq6661WWROF2XojNDpbI5mnamtwAAgD8AAIA/APbhvEhngLpyo4c1InLvLZ0pzrq66LW0AACAPwAAgD9NalC9j/Z/ujBskTsi4nQyn+zsueq3qboAAIA/AACAP9NIAL4Bvas9SHBIPVMHT776ZpU8xcnYuwAAAAAAAAAAE08Yvo8GZjvXRhk8xPMXulS0Hr097Qg7AACAPwAAgD/AM7e9KWw1ujpbZzzQk9Y2NhM4uxM80zUAAAAAAACAP5rEjzyupaS6NU05N6/0EzL8Yaq6vhNUtgAAgD8AAIA/Gj6VPVxTf7raJ8I69ZecNfCMwLqe1OK5AAAAAAAAAADahSI+OLi/uxqQrblj5zo3Gm0yvW630zgAAIA/AACAPwByB7z21H+6+SwXOSAwFTS9vPI5xnAwuAAAgD8AAIA/AClMPcMRTroO26G6lHAltrgO+jkS4ro5AACAPwAAgD/Gfya+DX4AP+4S/D0zUIq+lgqYPAKljz0AAAAAAAAAADDDer47WRk/u62pvSTH0L4AkdC9w7WQvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2ZdsPNg/XkCUhpRSlIwBbJRN6AOMAXSUR0CYFUHDaXa8dX2UKGgGaAloD0MIjxoTYq4/ZkCUhpRSlGgVTegDaBZHQJganQVsUIt1fZQoaAZoCWgPQwj8Ny9O/N9iQJSGlFKUaBVN6ANoFkdAmBymzByjpXV9lChoBmgJaA9DCBmto6qJZ2JAlIaUUpRoFU3oA2gWR0CYHLmz0HyFdX2UKGgGaAloD0MIR+nSv6QjZUCUhpRSlGgVTegDaBZHQJgfkXizcAR1fZQoaAZoCWgPQwjedTbkn3hnQJSGlFKUaBVN6ANoFkdAmCYhfWtlqnV9lChoBmgJaA9DCMh+FksRGGhAlIaUUpRoFU3oA2gWR0CYJm1iONo8dX2UKGgGaAloD0MIb4RFRZwHYUCUhpRSlGgVTegDaBZHQJgpj2IwdsB1fZQoaAZoCWgPQwhJ1XYTfEtjQJSGlFKUaBVN6ANoFkdAmC0OmvW6LHV9lChoBmgJaA9DCP32deAcy2JAlIaUUpRoFU3oA2gWR0CYMD0OVgQZdX2UKGgGaAloD0MINXwL60aZZkCUhpRSlGgVTegDaBZHQJgz2HxjJ+51fZQoaAZoCWgPQwiYolwaP55lQJSGlFKUaBVN6ANoFkdAmDT33ta6jHV9lChoBmgJaA9DCKhV9Idm4mRAlIaUUpRoFU3oA2gWR0CYNs9E1EVndX2UKGgGaAloD0MIMbQ6OcMQaECUhpRSlGgVTegDaBZHQJg7Homois51fZQoaAZoCWgPQwiZDwh0poBjQJSGlFKUaBVN6ANoFkdAmE44+0PYnXV9lChoBmgJaA9DCEGeXb71v2JAlIaUUpRoFU3oA2gWR0CYUEr8iwB6dX2UKGgGaAloD0MIyLJg4g8fYkCUhpRSlGgVTegDaBZHQJhXL2bobGZ1fZQoaAZoCWgPQwgZ5ZmXQ7BkQJSGlFKUaBVN6ANoFkdAmHawiJO32HV9lChoBmgJaA9DCDcAGxAhpmFAlIaUUpRoFU3oA2gWR0CYeNrmhdt3dX2UKGgGaAloD0MIGvm84ilcZUCUhpRSlGgVTegDaBZHQJh46+rU9ZB1fZQoaAZoCWgPQwhdUUoIVthiQJSGlFKUaBVN6ANoFkdAmHwDLjghr3V9lChoBmgJaA9DCP8EFytqTmNAlIaUUpRoFU3oA2gWR0CYgk4HoouxdX2UKGgGaAloD0MIEsE4uPSFYECUhpRSlGgVTegDaBZHQJiCiaCtihF1fZQoaAZoCWgPQwiP4EbKFihkQJSGlFKUaBVN6ANoFkdAmIT6xX4j8nV9lChoBmgJaA9DCGyyRj3EbGlAlIaUUpRoFU3oA2gWR0CYh3k5ZKWcdX2UKGgGaAloD0MIlwD8U6qIZkCUhpRSlGgVTegDaBZHQJiJjPHDJlt1fZQoaAZoCWgPQwiL+49Mh5JnQJSGlFKUaBVN6ANoFkdAmIvlJg9eQnV9lChoBmgJaA9DCCC29GgqTmJAlIaUUpRoFU3oA2gWR0CYjJcnVoYfdX2UKGgGaAloD0MIg0wycpbMY0CUhpRSlGgVTegDaBZHQJiNwywfQrt1fZQoaAZoCWgPQwjmkxXDVX1mQJSGlFKUaBVN6ANoFkdAmJDhWPtD2XV9lChoBmgJaA9DCCmYMQVrMk1AlIaUUpRoFUu+aBZHQJiUqk1uR9x1fZQoaAZoCWgPQwime53UlzNtQJSGlFKUaBVNoQFoFkdAmJapgTh5xHV9lChoBmgJaA9DCCDxK9bwJmVAlIaUUpRoFU3oA2gWR0CYoCaYNRWMdX2UKGgGaAloD0MI0xbX+Ez7XUCUhpRSlGgVTegDaBZHQJiiMUtZmqZ1fZQoaAZoCWgPQwiNt5Vem+twQJSGlFKUaBVNZgJoFkdAmKM1jurp7nV9lChoBmgJaA9DCKw2/686W2hAlIaUUpRoFU3oA2gWR0CYqYsPrfLtdX2UKGgGaAloD0MIYDlCBrIMcECUhpRSlGgVTZIDaBZHQJiqQAKfFrF1fZQoaAZoCWgPQwiLVBhbSOJxQJSGlFKUaBVNfgNoFkdAmKs40dilSHV9lChoBmgJaA9DCF2pZ0Go7mVAlIaUUpRoFU3oA2gWR0CYxh92ovSMdX2UKGgGaAloD0MIkWRW73C5ZkCUhpRSlGgVTegDaBZHQJjI4a2nbZh1fZQoaAZoCWgPQwgP0lPkkNBkQJSGlFKUaBVN6ANoFkdAmNF4HX2/SHV9lChoBmgJaA9DCPcDHhgAfXFAlIaUUpRoFU2mAmgWR0CY0bWaMJhOdX2UKGgGaAloD0MIw2aAC7KAYkCUhpRSlGgVTegDaBZHQJjUI2Q4jr11fZQoaAZoCWgPQwg/xty1hAtkQJSGlFKUaBVN6ANoFkdAmNZaD9OymnV9lChoBmgJaA9DCLh2oiSkdWhAlIaUUpRoFU3oA2gWR0CY2pQY1pCbdX2UKGgGaAloD0MIOUcdHdfiZ0CUhpRSlGgVTegDaBZHQJjch4qwyIp1fZQoaAZoCWgPQwi6FcJqLNJSQJSGlFKUaBVLtWgWR0CY3NDs+mm+dX2UKGgGaAloD0MIeqhtwyirZ0CUhpRSlGgVTegDaBZHQJjhNAood+51fZQoaAZoCWgPQwjjOPBquadgQJSGlFKUaBVN6ANoFkdAmOpj+R5kb3V9lChoBmgJaA9DCClbJO1GUlRAlIaUUpRoFUvtaBZHQJjr3FHavid1fZQoaAZoCWgPQwhHcY46urxkQJSGlFKUaBVN6ANoFkdAmPPTRMN+b3V9lChoBmgJaA9DCNffEoD/WmNAlIaUUpRoFU3oA2gWR0CY9WkWRA8kdX2UKGgGaAloD0MIHVn5ZTDNZ0CUhpRSlGgVTegDaBZHQJj2IVtXPqt1fZQoaAZoCWgPQwiqLAq7aBJwQJSGlFKUaBVNggNoFkdAmPae0ojOcHV9lChoBmgJaA9DCHcrS3QWWGhAlIaUUpRoFU3oA2gWR0CY+o814xDcdX2UKGgGaAloD0MIDMo0mlx4ZECUhpRSlGgVTegDaBZHQJj7DlOoHcF1fZQoaAZoCWgPQwhORL+2fohlQJSGlFKUaBVN6ANoFkdAmRS8IZ62OXV9lChoBmgJaA9DCAd6qG3D9WJAlIaUUpRoFU3oA2gWR0CZGL4HHFP0dX2UKGgGaAloD0MI8DUExyUcc0CUhpRSlGgVTVgBaBZHQJka5LFn7Hh1fZQoaAZoCWgPQwho5sk1BWBDQJSGlFKUaBVL42gWR0CZHIGR3eN2dX2UKGgGaAloD0MI1ZY6yGs4Z0CUhpRSlGgVTegDaBZHQJkkwWGh24d1fZQoaAZoCWgPQwitMlNa/ztlQJSGlFKUaBVN6ANoFkdAmSgaDwpe/3V9lChoBmgJaA9DCKKZJ9cUwWNAlIaUUpRoFU3oA2gWR0CZKrh2W6bwdX2UKGgGaAloD0MIT1lN1xPkZECUhpRSlGgVTegDaBZHQJkvnNKRMex1fZQoaAZoCWgPQwjSHFn55SVkQJSGlFKUaBVN6ANoFkdAmS/UxubZvnV9lChoBmgJaA9DCINuL2mMo2RAlIaUUpRoFU3oA2gWR0CZM5tT1kDqdX2UKGgGaAloD0MIUP9Z82OpbkCUhpRSlGgVTZoBaBZHQJkz+lEZzgd1fZQoaAZoCWgPQwgQQdXoVchyQJSGlFKUaBVNpAFoFkdAmTXwk1Mue3V9lChoBmgJaA9DCMtkOJ4PznFAlIaUUpRoFU3nAmgWR0CZNu51eSjhdX2UKGgGaAloD0MI5KCEmTZcaECUhpRSlGgVTegDaBZHQJk5ecoYvWZ1fZQoaAZoCWgPQwjChTyCm41mQJSGlFKUaBVN6ANoFkdAmTpPpD/lyXV9lChoBmgJaA9DCAQ5KGHmUXBAlIaUUpRoFU1gAmgWR0CZOqQF9roGdX2UKGgGaAloD0MIKhxBKsVkQUCUhpRSlGgVS69oFkdAmTuv9P1tf3V9lChoBmgJaA9DCLKEtTH26GhAlIaUUpRoFU3oA2gWR0CZQkGNJe3QdX2UKGgGaAloD0MIXkvIBz01Y0CUhpRSlGgVTegDaBZHQJlDfFcY64l1fZQoaAZoCWgPQwiF6XsNwUBvQJSGlFKUaBVNxgFoFkdAmUYo1cdHUnV9lChoBmgJaA9DCLxBtFa07GhAlIaUUpRoFU3oA2gWR0CZR3FUADJVdX2UKGgGaAloD0MITraBOxCccUCUhpRSlGgVTS8BaBZHQJlIORLbpNd1fZQoaAZoCWgPQwg50ENtW4lwQJSGlFKUaBVNyQFoFkdAmWaarBCUo3V9lChoBmgJaA9DCGBWKNL9OnJAlIaUUpRoFU31AmgWR0CZaGxL0z0pdX2UKGgGaAloD0MI5PVgUnwwQ0CUhpRSlGgVS9loFkdAmWwhaLXL/3V9lChoBmgJaA9DCHh95qzP6mVAlIaUUpRoFU3oA2gWR0CZbUp5eJHidX2UKGgGaAloD0MIbCHIQQmcb0CUhpRSlGgVTRkCaBZHQJlvA66reZZ1fZQoaAZoCWgPQwgJi4o4nXJkQJSGlFKUaBVN6ANoFkdAmXMkGRmseXV9lChoBmgJaA9DCCpSYWwhVWBAlIaUUpRoFU3oA2gWR0CZd53SKFZgdX2UKGgGaAloD0MI/dgkP+IHZ0CUhpRSlGgVTegDaBZHQJl8lDa4+bF1fZQoaAZoCWgPQwj3AUhtoq9yQJSGlFKUaBVNKgNoFkdAmX86YAsCk3V9lChoBmgJaA9DCJhr0QI0iGNAlIaUUpRoFU3oA2gWR0CZgF7wKBuodX2UKGgGaAloD0MISwSqfxA1VUCUhpRSlGgVS69oFkdAmYDrRrrPdHV9lChoBmgJaA9DCPBrJAnCz3BAlIaUUpRoFU3XAmgWR0CZge3UQTVUdX2UKGgGaAloD0MItY0/UdkTZUCUhpRSlGgVTegDaBZHQJmCSp++dsl1fZQoaAZoCWgPQwhHdTqQdd9uQJSGlFKUaBVNxAFoFkdAmYSSv1UVBXV9lChoBmgJaA9DCPdXj/vWfGJAlIaUUpRoFU3oA2gWR0CZhsGff4yodX2UKGgGaAloD0MIFf2hmScrcUCUhpRSlGgVTfcBaBZHQJmIE1vVEux1fZQoaAZoCWgPQwhrfvylxTRxQJSGlFKUaBVNlQJoFkdAmYmgcxTKknV9lChoBmgJaA9DCGlTdY/sE29AlIaUUpRoFU1sA2gWR0CZjfPYWcjJdX2UKGgGaAloD0MIrcH7qlyMZkCUhpRSlGgVTegDaBZHQJmQEC6pYLd1fZQoaAZoCWgPQwiy8stgjFFiQJSGlFKUaBVN6ANoFkdAmZOcIZ62OXV9lChoBmgJaA9DCCS2uwfo/lFAlIaUUpRoFUvVaBZHQJmWzq/ub7V1fZQoaAZoCWgPQwg89N2tbM1xQJSGlFKUaBVNIwFoFkdAmZdhO+IuXnVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}