amaye15
Intial Commit
4b2d0b0
import torch
from typing import Dict, Any, List
from PIL import Image
import base64
from io import BytesIO
import logging
class EndpointHandler:
"""
A handler class for processing image and text data, generating embeddings using a specified model and processor.
Attributes:
model: The pre-trained model used for generating embeddings.
processor: The pre-trained processor used to process images and text before model inference.
device: The device (CPU or CUDA) used to run model inference.
default_batch_size: The default batch size for processing images and text in batches.
"""
def __init__(self, path: str = "", default_batch_size: int = 4):
"""
Initializes the EndpointHandler with a specified model path and default batch size.
Args:
path (str): Path to the pre-trained model and processor.
default_batch_size (int): Default batch size for processing images and text data.
"""
# Initialize logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
from colpali_engine.models import ColQwen2, ColQwen2Processor
self.logger.info("Initializing model and processor.")
try:
self.model = ColQwen2.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto",
).eval()
self.processor = ColQwen2Processor.from_pretrained(path)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.default_batch_size = default_batch_size
self.logger.info("Initialization complete.")
except Exception as e:
self.logger.error(f"Failed to initialize model or processor: {e}")
raise
def _process_image_batch(self, images: List[Image.Image]) -> List[List[float]]:
"""
Processes a batch of images and generates embeddings.
Args:
images (List[Image.Image]): List of images to process.
Returns:
List[List[float]]: List of embeddings for each image.
"""
self.logger.debug(f"Processing batch of {len(images)} images.")
try:
batch_images = self.processor.process_images(images).to(self.device)
with torch.no_grad():
image_embeddings = self.model(**batch_images)
self.logger.debug("Image batch processing complete.")
return image_embeddings.cpu().tolist()
except Exception as e:
self.logger.error(f"Error processing image batch: {e}")
raise
def _process_text_batch(self, texts: List[str]) -> List[List[float]]:
"""
Processes a batch of text queries and generates embeddings.
Args:
texts (List[str]): List of text queries to process.
Returns:
List[List[float]]: List of embeddings for each text query.
"""
self.logger.debug(f"Processing batch of {len(texts)} text queries.")
try:
batch_queries = self.processor.process_queries(texts).to(self.device)
with torch.no_grad():
query_embeddings = self.model(**batch_queries)
self.logger.debug("Text batch processing complete.")
return query_embeddings.cpu().tolist()
except Exception as e:
self.logger.error(f"Error processing text batch: {e}")
raise
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Processes input data containing base64-encoded images and text queries, decodes them, and generates embeddings.
Args:
data (Dict[str, Any]): Dictionary containing input images, text queries, and optional batch size.
Returns:
Dict[str, Any]: Dictionary containing generated embeddings for images and text or error messages.
"""
images_data = data.get("image", [])
text_data = data.get("text", [])
batch_size = data.get("batch_size", self.default_batch_size)
# Decode and process images
images = []
if images_data:
self.logger.info("Decoding images from base64.")
for img_data in images_data:
if isinstance(img_data, str):
try:
image_bytes = base64.b64decode(img_data)
image = Image.open(BytesIO(image_bytes)).convert("RGB")
images.append(image)
except Exception as e:
self.logger.error(f"Invalid image data: {e}")
return {"error": f"Invalid image data: {e}"}
else:
self.logger.error("Images should be base64-encoded strings.")
return {"error": "Images should be base64-encoded strings."}
image_embeddings = []
if images:
self.logger.info("Processing image embeddings.")
try:
for i in range(0, len(images), batch_size):
batch_images = images[i : i + batch_size]
batch_embeddings = self._process_image_batch(batch_images)
image_embeddings.extend(batch_embeddings)
except Exception as e:
self.logger.error(f"Error generating image embeddings: {e}")
return {"error": f"Error generating image embeddings: {e}"}
# Process text data
text_embeddings = []
if text_data:
self.logger.info("Processing text embeddings.")
try:
for i in range(0, len(text_data), batch_size):
batch_texts = text_data[i : i + batch_size]
batch_text_embeddings = self._process_text_batch(batch_texts)
text_embeddings.extend(batch_text_embeddings)
except Exception as e:
self.logger.error(f"Error generating text embeddings: {e}")
return {"error": f"Error generating text embeddings: {e}"}
# Compute similarity scores if both image and text embeddings are available
scores = []
if image_embeddings and text_embeddings:
self.logger.info("Computing similarity scores.")
try:
image_embeddings_tensor = torch.tensor(image_embeddings).to(self.device)
text_embeddings_tensor = torch.tensor(text_embeddings).to(self.device)
with torch.no_grad():
scores = (
self.processor.score_multi_vector(
text_embeddings_tensor, image_embeddings_tensor
)
.cpu()
.tolist()
)
self.logger.info("Similarity scoring complete.")
except Exception as e:
self.logger.error(f"Error computing similarity scores: {e}")
return {"error": f"Error computing similarity scores: {e}"}
return {"image": image_embeddings, "text": text_embeddings, "scores": scores}