Update README.md
Browse files
README.md
CHANGED
@@ -1,20 +1,55 @@
|
|
1 |
---
|
2 |
base_model: readerbench/RoBERT-base
|
3 |
tags:
|
4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
- precision
|
8 |
- recall
|
|
|
|
|
|
|
9 |
model-index:
|
10 |
-
- name: ro-offense
|
11 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
#
|
18 |
|
19 |
This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
@@ -28,7 +63,10 @@ It achieves the following results on the evaluation set:
|
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
## Intended uses & limitations
|
34 |
|
@@ -36,7 +74,9 @@ More information needed
|
|
36 |
|
37 |
## Training and evaluation data
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
## Training procedure
|
42 |
|
@@ -50,7 +90,7 @@ The following hyperparameters were used during training:
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_ratio: 0.2
|
53 |
-
- num_epochs: 10
|
54 |
|
55 |
### Training results
|
56 |
|
@@ -59,7 +99,7 @@ The following hyperparameters were used during training:
|
|
59 |
| No log | 1.0 | 125 | 0.7789 | 0.7037 | 0.6825 | 0.7000 | 0.6873 | 0.7037 | 0.7132 |
|
60 |
| No log | 2.0 | 250 | 0.5170 | 0.8006 | 0.8066 | 0.8016 | 0.7986 | 0.8006 | 0.7971 |
|
61 |
| No log | 3.0 | 375 | 0.5139 | 0.8096 | 0.8168 | 0.8237 | 0.8120 | 0.8096 | 0.8047 |
|
62 |
-
| 0.6074 | 4.0 | 500 | 0.6180 | 0.8247 | 0.8251 | 0.8187 | 0.8210 | 0.8247 | 0.8233 |
|
63 |
| 0.6074 | 5.0 | 625 | 0.7311 | 0.8096 | 0.8071 | 0.8085 | 0.8064 | 0.8096 | 0.8071 |
|
64 |
| 0.6074 | 6.0 | 750 | 0.8365 | 0.8101 | 0.8117 | 0.8191 | 0.8105 | 0.8101 | 0.8051 |
|
65 |
| 0.6074 | 7.0 | 875 | 0.8411 | 0.8232 | 0.8235 | 0.8210 | 0.8207 | 0.8232 | 0.8210 |
|
|
|
1 |
---
|
2 |
base_model: readerbench/RoBERT-base
|
3 |
tags:
|
4 |
+
- hate speech
|
5 |
+
- offensive language
|
6 |
+
- romanian
|
7 |
+
- classification
|
8 |
+
- nlp
|
9 |
+
- bert
|
10 |
metrics:
|
11 |
- accuracy
|
12 |
- precision
|
13 |
- recall
|
14 |
+
- f1_macro
|
15 |
+
- f1_micro
|
16 |
+
- f1_weighted
|
17 |
model-index:
|
18 |
+
- name: ro-offense
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: text-classification # Required. Example: automatic-speech-recognition
|
22 |
+
name: Text Classification # Optional. Example: Speech Recognition
|
23 |
+
dataset:
|
24 |
+
type: readerbench/ro-offense # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
25 |
+
name: Rommanian Offensive Language Dataset # Required. A pretty name for the dataset. Example: Common Voice (French)
|
26 |
+
config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
27 |
+
split: test # Optional. Example: test
|
28 |
+
metrics:
|
29 |
+
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
|
30 |
+
value: 0.8190 # Required. Example: 20.90
|
31 |
+
name: Accuracy # Optional. Example: Test WER
|
32 |
+
- type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
|
33 |
+
value: 0.8138 # Required. Example: 20.90
|
34 |
+
name: Precision # Optional. Example: Test WER
|
35 |
+
- type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
|
36 |
+
value: 0.8118 # Required. Example: 20.90
|
37 |
+
name: Recall # Optional. Example: Test WER
|
38 |
+
- type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
|
39 |
+
value: 0.8189 # Required. Example: 20.90
|
40 |
+
name: Weighted F1 # Optional. Example: Test WER
|
41 |
+
- type: f1_micro # Required. Example: wer. Use metric id from https://hf.co/metrics
|
42 |
+
value: 0.8190 # Required. Example: 20.90
|
43 |
+
name: Macro F1 # Optional. Example: Test WER
|
44 |
+
- type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
|
45 |
+
value: 0.8126 # Required. Example: 20.90
|
46 |
+
name: Macro F1 # Optional. Example: Test WER
|
47 |
---
|
48 |
|
49 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
50 |
should probably proofread and complete it, then remove this comment. -->
|
51 |
|
52 |
+
# RO-Offense
|
53 |
|
54 |
This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on an unknown dataset.
|
55 |
It achieves the following results on the evaluation set:
|
|
|
63 |
|
64 |
## Model description
|
65 |
|
66 |
+
Finetuned Romanian BERT model for offensive classification.
|
67 |
+
|
68 |
+
Trained on the [RO-Offense](https://huggingface.co/datasets/readerbench/ro-offense) Dataset
|
69 |
+
|
70 |
|
71 |
## Intended uses & limitations
|
72 |
|
|
|
74 |
|
75 |
## Training and evaluation data
|
76 |
|
77 |
+
Trained on the train split of [RO-Offense](https://huggingface.co/datasets/readerbench/ro-offense) Dataset
|
78 |
+
|
79 |
+
Evaluated on the test split of [RO-Offense](https://huggingface.co/datasets/readerbench/ro-offense) Dataset
|
80 |
|
81 |
## Training procedure
|
82 |
|
|
|
90 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
91 |
- lr_scheduler_type: linear
|
92 |
- lr_scheduler_warmup_ratio: 0.2
|
93 |
+
- num_epochs: 10 (Early stop epoch 7, best epoch 4)
|
94 |
|
95 |
### Training results
|
96 |
|
|
|
99 |
| No log | 1.0 | 125 | 0.7789 | 0.7037 | 0.6825 | 0.7000 | 0.6873 | 0.7037 | 0.7132 |
|
100 |
| No log | 2.0 | 250 | 0.5170 | 0.8006 | 0.8066 | 0.8016 | 0.7986 | 0.8006 | 0.7971 |
|
101 |
| No log | 3.0 | 375 | 0.5139 | 0.8096 | 0.8168 | 0.8237 | 0.8120 | 0.8096 | 0.8047 |
|
102 |
+
| 0.6074 | **4.0** | 500 | 0.6180 | 0.8247 | 0.8251 | 0.8187 | 0.8210 | 0.8247 | **0.8233** |
|
103 |
| 0.6074 | 5.0 | 625 | 0.7311 | 0.8096 | 0.8071 | 0.8085 | 0.8064 | 0.8096 | 0.8071 |
|
104 |
| 0.6074 | 6.0 | 750 | 0.8365 | 0.8101 | 0.8117 | 0.8191 | 0.8105 | 0.8101 | 0.8051 |
|
105 |
| 0.6074 | 7.0 | 875 | 0.8411 | 0.8232 | 0.8235 | 0.8210 | 0.8207 | 0.8232 | 0.8210 |
|