andyP commited on
Commit
a4b4249
·
1 Parent(s): ac74139

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -8
README.md CHANGED
@@ -1,20 +1,55 @@
1
  ---
2
  base_model: readerbench/RoBERT-base
3
  tags:
4
- - generated_from_trainer
 
 
 
 
 
5
  metrics:
6
  - accuracy
7
  - precision
8
  - recall
 
 
 
9
  model-index:
10
- - name: ro-offense-01
11
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
- # ro-offense-01
18
 
19
  This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
@@ -28,7 +63,10 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
 
32
 
33
  ## Intended uses & limitations
34
 
@@ -36,7 +74,9 @@ More information needed
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
40
 
41
  ## Training procedure
42
 
@@ -50,7 +90,7 @@ The following hyperparameters were used during training:
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_ratio: 0.2
53
- - num_epochs: 10
54
 
55
  ### Training results
56
 
@@ -59,7 +99,7 @@ The following hyperparameters were used during training:
59
  | No log | 1.0 | 125 | 0.7789 | 0.7037 | 0.6825 | 0.7000 | 0.6873 | 0.7037 | 0.7132 |
60
  | No log | 2.0 | 250 | 0.5170 | 0.8006 | 0.8066 | 0.8016 | 0.7986 | 0.8006 | 0.7971 |
61
  | No log | 3.0 | 375 | 0.5139 | 0.8096 | 0.8168 | 0.8237 | 0.8120 | 0.8096 | 0.8047 |
62
- | 0.6074 | 4.0 | 500 | 0.6180 | 0.8247 | 0.8251 | 0.8187 | 0.8210 | 0.8247 | 0.8233 |
63
  | 0.6074 | 5.0 | 625 | 0.7311 | 0.8096 | 0.8071 | 0.8085 | 0.8064 | 0.8096 | 0.8071 |
64
  | 0.6074 | 6.0 | 750 | 0.8365 | 0.8101 | 0.8117 | 0.8191 | 0.8105 | 0.8101 | 0.8051 |
65
  | 0.6074 | 7.0 | 875 | 0.8411 | 0.8232 | 0.8235 | 0.8210 | 0.8207 | 0.8232 | 0.8210 |
 
1
  ---
2
  base_model: readerbench/RoBERT-base
3
  tags:
4
+ - hate speech
5
+ - offensive language
6
+ - romanian
7
+ - classification
8
+ - nlp
9
+ - bert
10
  metrics:
11
  - accuracy
12
  - precision
13
  - recall
14
+ - f1_macro
15
+ - f1_micro
16
+ - f1_weighted
17
  model-index:
18
+ - name: ro-offense
19
+ results:
20
+ - task:
21
+ type: text-classification # Required. Example: automatic-speech-recognition
22
+ name: Text Classification # Optional. Example: Speech Recognition
23
+ dataset:
24
+ type: readerbench/ro-offense # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
25
+ name: Rommanian Offensive Language Dataset # Required. A pretty name for the dataset. Example: Common Voice (French)
26
+ config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
27
+ split: test # Optional. Example: test
28
+ metrics:
29
+ - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
30
+ value: 0.8190 # Required. Example: 20.90
31
+ name: Accuracy # Optional. Example: Test WER
32
+ - type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
33
+ value: 0.8138 # Required. Example: 20.90
34
+ name: Precision # Optional. Example: Test WER
35
+ - type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
36
+ value: 0.8118 # Required. Example: 20.90
37
+ name: Recall # Optional. Example: Test WER
38
+ - type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
39
+ value: 0.8189 # Required. Example: 20.90
40
+ name: Weighted F1 # Optional. Example: Test WER
41
+ - type: f1_micro # Required. Example: wer. Use metric id from https://hf.co/metrics
42
+ value: 0.8190 # Required. Example: 20.90
43
+ name: Macro F1 # Optional. Example: Test WER
44
+ - type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
45
+ value: 0.8126 # Required. Example: 20.90
46
+ name: Macro F1 # Optional. Example: Test WER
47
  ---
48
 
49
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
50
  should probably proofread and complete it, then remove this comment. -->
51
 
52
+ # RO-Offense
53
 
54
  This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on an unknown dataset.
55
  It achieves the following results on the evaluation set:
 
63
 
64
  ## Model description
65
 
66
+ Finetuned Romanian BERT model for offensive classification.
67
+
68
+ Trained on the [RO-Offense](https://huggingface.co/datasets/readerbench/ro-offense) Dataset
69
+
70
 
71
  ## Intended uses & limitations
72
 
 
74
 
75
  ## Training and evaluation data
76
 
77
+ Trained on the train split of [RO-Offense](https://huggingface.co/datasets/readerbench/ro-offense) Dataset
78
+
79
+ Evaluated on the test split of [RO-Offense](https://huggingface.co/datasets/readerbench/ro-offense) Dataset
80
 
81
  ## Training procedure
82
 
 
90
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
91
  - lr_scheduler_type: linear
92
  - lr_scheduler_warmup_ratio: 0.2
93
+ - num_epochs: 10 (Early stop epoch 7, best epoch 4)
94
 
95
  ### Training results
96
 
 
99
  | No log | 1.0 | 125 | 0.7789 | 0.7037 | 0.6825 | 0.7000 | 0.6873 | 0.7037 | 0.7132 |
100
  | No log | 2.0 | 250 | 0.5170 | 0.8006 | 0.8066 | 0.8016 | 0.7986 | 0.8006 | 0.7971 |
101
  | No log | 3.0 | 375 | 0.5139 | 0.8096 | 0.8168 | 0.8237 | 0.8120 | 0.8096 | 0.8047 |
102
+ | 0.6074 | **4.0** | 500 | 0.6180 | 0.8247 | 0.8251 | 0.8187 | 0.8210 | 0.8247 | **0.8233** |
103
  | 0.6074 | 5.0 | 625 | 0.7311 | 0.8096 | 0.8071 | 0.8085 | 0.8064 | 0.8096 | 0.8071 |
104
  | 0.6074 | 6.0 | 750 | 0.8365 | 0.8101 | 0.8117 | 0.8191 | 0.8105 | 0.8101 | 0.8051 |
105
  | 0.6074 | 7.0 | 875 | 0.8411 | 0.8232 | 0.8235 | 0.8210 | 0.8207 | 0.8232 | 0.8210 |