File size: 5,738 Bytes
6922b1b
 
649d283
 
6922b1b
649d283
 
 
 
 
 
 
6922b1b
 
 
 
 
649d283
6922b1b
 
649d283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6922b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649d283
 
 
 
 
6922b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649d283
6922b1b
 
 
 
 
 
649d283
6922b1b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
base_model: readerbench/RoBERT-base
language:
- ro
tags:
- sentiment
- classification
- nlp
- bert
datasets:
- decathlon_reviews
- cinemagia_reviews
metrics:
- accuracy
- precision
- recall
- f1
- f1 weighted
model-index:
- name: ro-sentiment-03
  results: 
  - task:
      type: text-classification             # Required. Example: automatic-speech-recognition
      name: Text Classification             # Optional. Example: Speech Recognition
    dataset:
      type: ro_sent          # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: Rommanian Sentiment Dataset          # Required. A pretty name for the dataset. Example: Common Voice (French)
      config: default      # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
      split: all        # Optional. Example: test
    metrics:
      - type: accuracy         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.85       # Required. Example: 20.90
        name: Accuracy         # Optional. Example: Test WER
      - type: precision         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.85       # Required. Example: 20.90
        name: Precision         # Optional. Example: Test WER
      - type: recall         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.85       # Required. Example: 20.90
        name: Recall         # Optional. Example: Test WER
      - type: f1_weighted         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.85       # Required. Example: 20.90
        name: Weighted F1         # Optional. Example: Test WER
      - type: f1_macro         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.84       # Required. Example: 20.90
        name: Weighted F1         # Optional. Example: Test WER
  - task:
      type: text-classification             # Required. Example: automatic-speech-recognition
      name: Text Classification             # Optional. Example: Speech Recognition
    dataset:
      type: laroseda          # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: A Large Romanian Sentiment Data Set          # Required. A pretty name for the dataset. Example: Common Voice (French)
      config: default      # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
      split: all        # Optional. Example: test
    metrics:
      - type: accuracy         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.85       # Required. Example: 20.90
        name: Accuracy         # Optional. Example: Test WER
      - type: precision         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.86       # Required. Example: 20.90
        name: Precision         # Optional. Example: Test WER
      - type: recall         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.85       # Required. Example: 20.90
        name: Recall         # Optional. Example: Test WER
      - type: f1_weighted         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.84       # Required. Example: 20.90
        name: Weighted F1         # Optional. Example: Test WER
      - type: f1_macro         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: 0.84       # Required. Example: 20.90
        name: Weighted F1         # Optional. Example: Test WER
        
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ro-sentiment-03

This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3923
- Accuracy: 0.8307
- Precision: 0.8366
- Recall: 0.8959
- F1: 0.8652
- F1 Weighted: 0.8287

### Evaluation on other datasets

**SENT_RO**


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10 (Early stop epoch 3, best epoch 2)

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| 0.4198        | 1.0   | 1629 | 0.3983          | 0.8377   | 0.8791    | 0.8721 | 0.8756 | 0.8380      |
| 0.3861        | **2.0**   | 3258 | 0.4312          | 0.8429   | 0.8963    | 0.8665 | 0.8812 | **0.8442**      |
| 0.3189        | 3.0   | 4887 | 0.3923          | 0.8307   | 0.8366    | 0.8959 | 0.8652 | 0.8287      |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3