nihitdesai commited on
Commit
acf905a
·
verified ·
1 Parent(s): 4c54e8c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model:
4
+ - Qwen/Qwen2-1.5B-Instruct
5
+ tags:
6
+ - data processing
7
+ - slm
8
+ ---
9
+
10
+
11
+ ## Model Details
12
+
13
+ RefuelLLM-2-mini, aka Qwen-2-Refueled, is a Qwen-2-1.5B base model instruction tuned on a corpus of 2750+ datasets, spanning tasks such as classification, reading comprehension, structured attribute extraction and entity resolution. We're excited to open-source the model for the community to build on top of.
14
+
15
+ More details about [RefuelLLM-2-mini](https://www.refuel.ai/blog-posts/refuel-llm-2-mini), and the [RefuelLLM-2 family of models](https://www.refuel.ai/blog-posts/announcing-refuel-llm-2).
16
+
17
+ **Model developers** - Refuel AI
18
+
19
+ **Input** - Text only.
20
+
21
+ **Output** - Text only.
22
+
23
+ **Architecture** - Qwen-2-Refueled is built on top of a Qwen-2-1.5B base model.
24
+
25
+ **Release Date** - May 8, 2024.
26
+
27
+ **License** - [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en)
28
+
29
+ ## How to use
30
+
31
+ This repository contains weights for Qwen-2-Refueled that are compatible for use with HuggingFace. See the snippet below for usage with Transformers:
32
+
33
+ ```python
34
+ >>> import torch
35
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
36
+
37
+ >>> model_id = "refuelai/Qwen-2-Refueled"
38
+ >>> tokenizer = AutoTokenizer.from_pretrained(model_id)
39
+ >>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
40
+
41
+ >>> messages = [{"role": "user", "content": "Is this comment toxic or non-toxic: RefuelLLM is the new way to label text data!"}]
42
+
43
+ >>> inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
44
+
45
+ >>> outputs = model.generate(inputs, max_new_tokens=20)
46
+ >>> print(tokenizer.decode(outputs[0]))
47
+ ```
48
+
49
+ ## Benchmarks
50
+
51
+ In this section, we report the output quality results on our benchmark of labeling tasks. For details on the methodology see [here](https://www.refuel.ai/blog-posts/refuel-llm-2-mini).
52
+
53
+
54
+ | Model | Size | Overall | Classification | Reading Comprehension | Structure Extraction | Entity Matching |
55
+ |---------------------|-------|-----------|----------------|-----------------------|-----------------------|-----------------|
56
+ | RefuelLLM-2-mini | 1.5B | **75.02%**| **72.18%** | **78.18%** | 75.18% | 80.75% |
57
+ | Qwen-2-3B | 3B | 67.62% | 70.91% | 71.53% | **75.72%** | 80.75% |
58
+ | Phi-3.5-mini-instruct | 3.8B | 65.63% | 70.57% | 71.89% | 65.34% | **83.53%** |
59
+ | Gemma-2-2B | 2B | 64.52% | 67.99% | 67.94% | 76.01% | 39.50% |
60
+ | Llama-3-3B | 3B | 55.80% | 55.81% | 65.12% | 61.50% | 55.01% |
61
+ | Qwen-2-1.5B | 1.5B | 51.22% | 47.36% | 67.15% | 56.17% | 45.25% |
62
+ | Llama-3-1B | 1B | 39.92% | 44.58% | 29.67% | 39.50% | 62.94% |
63
+
64
+
65
+
66
+ ## Limitations
67
+
68
+ The Qwen-2-Refueled does not have any moderation mechanisms. We're looking forward to engaging with the community
69
+ on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.