madhavatreplit
commited on
Commit
·
9ed598f
1
Parent(s):
1076fcf
Add files for release
Browse filesAdding all model and tokenizer code required for the ReplitLM release, along with the model weights.
- README.md +101 -0
- attention.py +409 -0
- config.json +46 -0
- configuration_replit_lm.py +168 -0
- generation_config.json +5 -0
- gpt_blocks.py +90 -0
- low_precision_layernorm.py +35 -0
- param_init_fns.py +464 -0
- pytorch_model.bin +3 -0
- replit_lm.py +453 -0
- replit_lm_tokenizer.py +161 -0
- special_tokens_map.json +5 -0
- spiece.model +3 -0
- tokenizer_config.json +18 -0
README.md
CHANGED
@@ -1,3 +1,104 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- bigcode/the-stack-dedup
|
5 |
---
|
6 |
+
|
7 |
+
|
8 |
+
# replit-code-v1-3b
|
9 |
+
|
10 |
+
`replit-code-v1-3b` is a 2.7B model. It is trained on the Stack Dedup v1.2 dataset.
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
## Model
|
15 |
+
|
16 |
+
|
17 |
+
```python
|
18 |
+
from transformers import AutoModelForCausalLM
|
19 |
+
|
20 |
+
# load model
|
21 |
+
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
22 |
+
```
|
23 |
+
|
24 |
+
To use the optimized Triton implementation of FlashAttention on GPUs with BF16 precision, move the model to `bfloat16` and use it as follows:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoModelForCausalLM
|
28 |
+
|
29 |
+
# load model
|
30 |
+
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True, attn_impl='triton')
|
31 |
+
model.to(device='cuda:0', dtype=torch.bfloat16)
|
32 |
+
|
33 |
+
# forward pass
|
34 |
+
x = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
|
35 |
+
x = x.to(device='cuda:0', dtype=torch.bfloat16)
|
36 |
+
y = model(x)
|
37 |
+
|
38 |
+
```
|
39 |
+
|
40 |
+
Note that `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the
|
41 |
+
[Transformers](https://huggingface.co/docs/transformers/index) library.
|
42 |
+
|
43 |
+
## Tokenizer
|
44 |
+
|
45 |
+
We have trained a custom SentencePiece Unigram tokenizer optimized with a vocabulary specifically for code of 32768 tokens.
|
46 |
+
|
47 |
+
Note that using this requires the `sentencepiece` library to be installed.
|
48 |
+
|
49 |
+
The tokenizer can be used as follows:
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoTokenizer
|
53 |
+
|
54 |
+
# load tokenizer
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
56 |
+
|
57 |
+
# single input encoding + generation
|
58 |
+
x = tokenizer.encode('def hello():\n print("hello world")\n', return_tensors='pt')
|
59 |
+
y = model.generate(x)
|
60 |
+
|
61 |
+
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness
|
62 |
+
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
63 |
+
print(generated_code)
|
64 |
+
```
|
65 |
+
|
66 |
+
Note that:
|
67 |
+
- `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the [Transformers](https://huggingface.co/docs/transformers/index) library.
|
68 |
+
- `clean_up_tokenization_spaces=False` is meant to avoid removing spaces in the output, because that would affect the syntactical correctness of the generated code.
|
69 |
+
|
70 |
+
|
71 |
+
## Generation
|
72 |
+
|
73 |
+
You can generate code using the `transformers` library as follows:
|
74 |
+
|
75 |
+
```python
|
76 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
77 |
+
model = transformers.AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
|
78 |
+
|
79 |
+
x = tokenizer.encode('def fibonacci(n): ', return_tensors='pt')
|
80 |
+
y = model.generate(x, max_length=100, do_sample=True, top_p=0.95, top_k=4, temperature=0.2, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
81 |
+
|
82 |
+
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness
|
83 |
+
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
84 |
+
print(generated_code)
|
85 |
+
```
|
86 |
+
|
87 |
+
Experiment with different decoding methods and parameters to get the best results for your use case.
|
88 |
+
|
89 |
+
## Post Processing
|
90 |
+
|
91 |
+
Note that as with all code generation models, post-processing of the generated code is important. In particular, the following post-processing steps are recommended:
|
92 |
+
- stop generation when the EOS token is encountered
|
93 |
+
- remove trailing whitespaces
|
94 |
+
- set `max_tokens` to a reasonable value based on your completion use case
|
95 |
+
- truncate generation to stop words such as `return`, `def`, "```", "`\n\n\n`" to avoid generating incomplete code when `max_tokens` is larger than the length of the expected generated code.
|
96 |
+
|
97 |
+
## Inference
|
98 |
+
Coming soon.
|
99 |
+
|
100 |
+
## Evaluation
|
101 |
+
Coming soon.
|
102 |
+
|
103 |
+
## Model Hash
|
104 |
+
5bc28ce32c6f9aec935ead7b60ea1c46
|
attention.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Attention layers."""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from einops import rearrange
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from .low_precision_layernorm import LPLayerNorm
|
15 |
+
|
16 |
+
|
17 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int,
|
18 |
+
original_is_causal: bool):
|
19 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
20 |
+
if num_query_tokens != 1:
|
21 |
+
raise NotImplementedError(
|
22 |
+
'ReplitLM does not support query and key with different number of tokens, unless number of query tokens is 1.'
|
23 |
+
)
|
24 |
+
else:
|
25 |
+
return False
|
26 |
+
return original_is_causal
|
27 |
+
|
28 |
+
|
29 |
+
def scaled_multihead_dot_product_attention(
|
30 |
+
query,
|
31 |
+
key,
|
32 |
+
value,
|
33 |
+
n_heads,
|
34 |
+
softmax_scale=None,
|
35 |
+
attn_bias=None,
|
36 |
+
key_padding_mask=None,
|
37 |
+
is_causal=False,
|
38 |
+
dropout_p=0.0,
|
39 |
+
training=False,
|
40 |
+
needs_weights=False,
|
41 |
+
):
|
42 |
+
|
43 |
+
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
44 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=n_heads) # includes key.t()
|
45 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=n_heads)
|
46 |
+
|
47 |
+
min_val = torch.finfo(q.dtype).min
|
48 |
+
|
49 |
+
b, _, s_q, d = q.shape
|
50 |
+
s_k = k.size(-1)
|
51 |
+
|
52 |
+
if softmax_scale is None:
|
53 |
+
softmax_scale = 1 / math.sqrt(d)
|
54 |
+
|
55 |
+
attn_weight = q.matmul(k) * softmax_scale
|
56 |
+
|
57 |
+
if attn_bias is not None:
|
58 |
+
if (attn_bias.size(-1) != 1 and
|
59 |
+
attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and
|
60 |
+
attn_bias.size(-2) != s_q):
|
61 |
+
raise RuntimeError(
|
62 |
+
f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
|
63 |
+
)
|
64 |
+
attn_weight = attn_weight + attn_bias
|
65 |
+
|
66 |
+
if key_padding_mask is not None:
|
67 |
+
if attn_bias is not None:
|
68 |
+
warnings.warn(
|
69 |
+
'Propogating key_padding_mask to the attention module ' +
|
70 |
+
'and applying it within the attention module can cause ' +
|
71 |
+
'unneccessary computation/memory usage. Consider integrating ' +
|
72 |
+
'into attn_bias once and passing that to each attention ' +
|
73 |
+
'module instead.'
|
74 |
+
)
|
75 |
+
attn_weight = attn_weight.masked_fill(
|
76 |
+
~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
77 |
+
|
78 |
+
if is_causal:
|
79 |
+
s = max(s_q, s_k)
|
80 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
81 |
+
causal_mask = causal_mask.tril()
|
82 |
+
causal_mask = causal_mask.to(torch.bool)
|
83 |
+
causal_mask = ~causal_mask
|
84 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
85 |
+
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
|
86 |
+
min_val)
|
87 |
+
|
88 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
89 |
+
|
90 |
+
if dropout_p:
|
91 |
+
attn_weight = torch.nn.functional.dropout(attn_weight,
|
92 |
+
p=dropout_p,
|
93 |
+
training=training,
|
94 |
+
inplace=True)
|
95 |
+
|
96 |
+
out = attn_weight.matmul(v)
|
97 |
+
out = rearrange(out, 'b h s d -> b s (h d)')
|
98 |
+
|
99 |
+
if needs_weights:
|
100 |
+
return out, attn_weight
|
101 |
+
return out, None
|
102 |
+
|
103 |
+
|
104 |
+
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
105 |
+
for tensor in tensors:
|
106 |
+
if tensor.dtype not in valid_dtypes:
|
107 |
+
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
|
108 |
+
if not tensor.is_cuda:
|
109 |
+
raise TypeError(
|
110 |
+
f'Inputs must be cuda tensors ({tensor.is_cuda=}).')
|
111 |
+
|
112 |
+
|
113 |
+
def flash_attn_fn(
|
114 |
+
query,
|
115 |
+
key,
|
116 |
+
value,
|
117 |
+
n_heads,
|
118 |
+
softmax_scale=None,
|
119 |
+
attn_bias=None,
|
120 |
+
key_padding_mask=None,
|
121 |
+
is_causal=False,
|
122 |
+
dropout_p=0.0,
|
123 |
+
training=False,
|
124 |
+
needs_weights=False,
|
125 |
+
):
|
126 |
+
try:
|
127 |
+
from flash_attn import bert_padding, flash_attn_interface
|
128 |
+
except:
|
129 |
+
raise RuntimeError('Please install flash_attn==0.2.8')
|
130 |
+
|
131 |
+
check_valid_inputs(query, key, value)
|
132 |
+
|
133 |
+
if attn_bias is not None:
|
134 |
+
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
135 |
+
|
136 |
+
batch_size, seqlen = query.shape[:2]
|
137 |
+
|
138 |
+
if key_padding_mask is None:
|
139 |
+
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
140 |
+
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
141 |
+
|
142 |
+
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
|
143 |
+
query, query_padding_mask)
|
144 |
+
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
145 |
+
|
146 |
+
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
|
147 |
+
key, key_padding_mask)
|
148 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
149 |
+
|
150 |
+
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
|
151 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
152 |
+
|
153 |
+
dropout_p = dropout_p if training else 0.0
|
154 |
+
|
155 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
156 |
+
|
157 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
|
158 |
+
query_unpad,
|
159 |
+
key_unpad,
|
160 |
+
value_unpad,
|
161 |
+
cu_seqlens_q,
|
162 |
+
cu_seqlens_k,
|
163 |
+
max_seqlen_q,
|
164 |
+
max_seqlen_k,
|
165 |
+
dropout_p,
|
166 |
+
softmax_scale=softmax_scale,
|
167 |
+
causal=reset_is_causal,
|
168 |
+
return_attn_probs=needs_weights)
|
169 |
+
|
170 |
+
output = bert_padding.pad_input(
|
171 |
+
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
|
172 |
+
seqlen)
|
173 |
+
return output, None
|
174 |
+
|
175 |
+
|
176 |
+
def triton_flash_attn_fn(
|
177 |
+
query,
|
178 |
+
key,
|
179 |
+
value,
|
180 |
+
n_heads,
|
181 |
+
softmax_scale=None,
|
182 |
+
attn_bias=None,
|
183 |
+
key_padding_mask=None,
|
184 |
+
is_causal=False,
|
185 |
+
dropout_p=0.0,
|
186 |
+
training=False,
|
187 |
+
needs_weights=False,
|
188 |
+
):
|
189 |
+
try:
|
190 |
+
from flash_attn import flash_attn_triton # type: ignore
|
191 |
+
except:
|
192 |
+
raise RuntimeError(
|
193 |
+
'Please install flash_attn==0.2.8 and triton==2.0.0.dev20221202.')
|
194 |
+
|
195 |
+
check_valid_inputs(query, key, value)
|
196 |
+
|
197 |
+
if dropout_p:
|
198 |
+
raise NotImplementedError(
|
199 |
+
f'Dropout not implemented for attn_impl: triton.')
|
200 |
+
|
201 |
+
if needs_weights:
|
202 |
+
raise NotImplementedError(
|
203 |
+
f'attn_impl: triton cannot return attn weights.')
|
204 |
+
|
205 |
+
if key_padding_mask is not None:
|
206 |
+
warnings.warn(
|
207 |
+
'Propagating key_padding_mask to the attention module ' +
|
208 |
+
'and applying it within the attention module can cause ' +
|
209 |
+
'unnecessary computation/memory usage. Consider integrating ' +
|
210 |
+
'into attn_bias once and passing that to each attention ' +
|
211 |
+
'module instead.'
|
212 |
+
)
|
213 |
+
b_size, s_k = key_padding_mask.shape[:2]
|
214 |
+
|
215 |
+
if attn_bias is None:
|
216 |
+
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
217 |
+
|
218 |
+
attn_bias = attn_bias.masked_fill(
|
219 |
+
~key_padding_mask.view((b_size, 1, 1, s_k)),
|
220 |
+
torch.finfo(query.dtype).min)
|
221 |
+
|
222 |
+
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
223 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=n_heads)
|
224 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=n_heads)
|
225 |
+
|
226 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
227 |
+
attn_output = flash_attn_triton.flash_attn_func(query, key, value,
|
228 |
+
attn_bias, reset_is_causal,
|
229 |
+
softmax_scale)
|
230 |
+
|
231 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
232 |
+
|
233 |
+
return output, None
|
234 |
+
|
235 |
+
|
236 |
+
class MultiheadAttention(nn.Module):
|
237 |
+
"""Multi-head self attention.
|
238 |
+
|
239 |
+
Using torch or triton attention implemetation enables user to also use
|
240 |
+
additive bias.
|
241 |
+
"""
|
242 |
+
|
243 |
+
def __init__(
|
244 |
+
self,
|
245 |
+
d_model: int,
|
246 |
+
n_heads: int,
|
247 |
+
attn_impl: str = 'triton',
|
248 |
+
attn_clip_qkv: Optional[float] = None,
|
249 |
+
attn_qk_ln: bool = False,
|
250 |
+
softmax_scale: Optional[float] = None,
|
251 |
+
attn_pdrop: float = 0.0,
|
252 |
+
low_precision_layernorm: bool = False,
|
253 |
+
device: Optional[str] = None,
|
254 |
+
):
|
255 |
+
super().__init__()
|
256 |
+
|
257 |
+
self.attn_impl = attn_impl
|
258 |
+
self.clip_qkv = attn_clip_qkv
|
259 |
+
self.attn_qk_ln = attn_qk_ln
|
260 |
+
|
261 |
+
self.d_model = d_model
|
262 |
+
self.n_heads = n_heads
|
263 |
+
self.softmax_scale = softmax_scale
|
264 |
+
if self.softmax_scale is None:
|
265 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
266 |
+
self.attn_dropout_p = attn_pdrop
|
267 |
+
|
268 |
+
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
269 |
+
# for param init fn; enables shape based init of fused layers
|
270 |
+
fuse_splits = (d_model, 2 * d_model)
|
271 |
+
self.Wqkv._fused = (0, fuse_splits) # type: ignore
|
272 |
+
|
273 |
+
if self.attn_qk_ln:
|
274 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
275 |
+
self.q_ln = layernorm_class(self.d_model, device=device)
|
276 |
+
self.k_ln = layernorm_class(self.d_model, device=device)
|
277 |
+
|
278 |
+
if self.attn_impl == 'flash':
|
279 |
+
self.attn_fn = flash_attn_fn
|
280 |
+
elif self.attn_impl == 'triton':
|
281 |
+
self.attn_fn = triton_flash_attn_fn
|
282 |
+
warnings.warn(
|
283 |
+
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +
|
284 |
+
'it uses more memory. When training larger models this can trigger ' +
|
285 |
+
'alloc retries which hurts performance. If encountered, we recommend ' +
|
286 |
+
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
287 |
+
elif self.attn_impl == 'torch':
|
288 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
289 |
+
if torch.cuda.is_available():
|
290 |
+
warnings.warn(
|
291 |
+
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +
|
292 |
+
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +
|
293 |
+
'we recommend using `attn_impl: triton`.'
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
297 |
+
|
298 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
299 |
+
self.out_proj._is_residual = True # type: ignore
|
300 |
+
|
301 |
+
def forward(self,
|
302 |
+
x,
|
303 |
+
past_key_value=None,
|
304 |
+
attn_bias=None,
|
305 |
+
attention_mask=None,
|
306 |
+
is_causal=True,
|
307 |
+
needs_weights=False):
|
308 |
+
qkv = self.Wqkv(x)
|
309 |
+
|
310 |
+
if self.clip_qkv:
|
311 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
312 |
+
|
313 |
+
query, key, value = qkv.chunk(3, dim=2)
|
314 |
+
|
315 |
+
key_padding_mask = attention_mask
|
316 |
+
|
317 |
+
if self.attn_qk_ln:
|
318 |
+
# Applying layernorm to qk
|
319 |
+
dtype = query.dtype
|
320 |
+
query = self.q_ln(query).to(dtype)
|
321 |
+
key = self.k_ln(key).to(dtype)
|
322 |
+
|
323 |
+
if past_key_value is not None:
|
324 |
+
if len(past_key_value) != 0:
|
325 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
326 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
327 |
+
|
328 |
+
past_key_value = (key, value)
|
329 |
+
|
330 |
+
if attn_bias is not None:
|
331 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
332 |
+
|
333 |
+
context, attn_weights = self.attn_fn(
|
334 |
+
query,
|
335 |
+
key,
|
336 |
+
value,
|
337 |
+
self.n_heads,
|
338 |
+
softmax_scale=self.softmax_scale,
|
339 |
+
attn_bias=attn_bias,
|
340 |
+
key_padding_mask=key_padding_mask,
|
341 |
+
is_causal=is_causal,
|
342 |
+
dropout_p=self.attn_dropout_p,
|
343 |
+
training=self.training,
|
344 |
+
needs_weights=needs_weights,
|
345 |
+
)
|
346 |
+
|
347 |
+
return self.out_proj(context), attn_weights, past_key_value
|
348 |
+
|
349 |
+
|
350 |
+
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal,
|
351 |
+
use_sequence_id):
|
352 |
+
if attn_impl == 'flash':
|
353 |
+
return None
|
354 |
+
elif attn_impl in ['torch', 'triton']:
|
355 |
+
if alibi:
|
356 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
357 |
+
return (1, n_heads, seq_len, seq_len)
|
358 |
+
return (1, n_heads, 1, seq_len)
|
359 |
+
elif prefix_lm or use_sequence_id:
|
360 |
+
return (1, 1, seq_len, seq_len)
|
361 |
+
return None
|
362 |
+
else:
|
363 |
+
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
364 |
+
|
365 |
+
|
366 |
+
def attn_bias(attn_impl,
|
367 |
+
attn_bias,
|
368 |
+
n_heads,
|
369 |
+
seq_len,
|
370 |
+
causal=False,
|
371 |
+
alibi=False,
|
372 |
+
alibi_bias_max=8):
|
373 |
+
if attn_impl == 'flash':
|
374 |
+
return None
|
375 |
+
elif attn_impl in ['torch', 'triton']:
|
376 |
+
if alibi:
|
377 |
+
# in place add alibi to attn bias
|
378 |
+
device, dtype = attn_bias.device, attn_bias.dtype
|
379 |
+
attn_bias = attn_bias.add(
|
380 |
+
alibi_bias(n_heads,
|
381 |
+
seq_len,
|
382 |
+
full=not causal,
|
383 |
+
alibi_bias_max=alibi_bias_max,
|
384 |
+
device=device,
|
385 |
+
dtype=dtype))
|
386 |
+
return attn_bias
|
387 |
+
else:
|
388 |
+
raise ValueError(f'{attn_impl=} is an invalid setting.')
|
389 |
+
|
390 |
+
|
391 |
+
def alibi_bias(n_heads,
|
392 |
+
seq_len,
|
393 |
+
full=False,
|
394 |
+
alibi_bias_max=8,
|
395 |
+
device=None,
|
396 |
+
dtype=None):
|
397 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=dtype,
|
398 |
+
device=device).view(1, 1, 1, seq_len)
|
399 |
+
if full:
|
400 |
+
# generate 1 x Heads x SeqLen x SeqLen alibi bias mask
|
401 |
+
# otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
|
402 |
+
alibi_bias = alibi_bias - torch.arange(
|
403 |
+
1 - seq_len, 1, dtype=dtype, device=device).view(1, 1, seq_len, 1)
|
404 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
405 |
+
|
406 |
+
m = torch.arange(1, n_heads + 1, dtype=dtype, device=device)
|
407 |
+
m = m.mul(alibi_bias_max / n_heads)
|
408 |
+
alibi_bias = alibi_bias * (1. / (2**m.view(1, n_heads, 1, 1)))
|
409 |
+
return alibi_bias
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "replit/replit-code-v1-3b",
|
3 |
+
"alibi": true,
|
4 |
+
"alibi_bias_max": 8,
|
5 |
+
"architectures": [
|
6 |
+
"ReplitLM"
|
7 |
+
],
|
8 |
+
"attn_clip_qkv": null,
|
9 |
+
"attn_impl": "torch",
|
10 |
+
"attn_pdrop": 0,
|
11 |
+
"attn_qk_ln": false,
|
12 |
+
"attn_uses_sequence_id": false,
|
13 |
+
"auto_map": {
|
14 |
+
"AutoConfig": "configuration_replit_lm.ReplitLMConfig",
|
15 |
+
"AutoModelForCausalLM": "replit_lm.ReplitLM"
|
16 |
+
},
|
17 |
+
"d_model": 2560,
|
18 |
+
"emb_init_std": null,
|
19 |
+
"emb_init_uniform_lim": null,
|
20 |
+
"emb_pdrop": 0,
|
21 |
+
"embedding_fraction": 1.0,
|
22 |
+
"fan_mode": "fan_in",
|
23 |
+
"init_device": "cpu",
|
24 |
+
"init_div_is_residual": true,
|
25 |
+
"init_gain": 0,
|
26 |
+
"init_nonlinearity": "relu",
|
27 |
+
"init_std": 0.02,
|
28 |
+
"logit_scale": null,
|
29 |
+
"low_precision_layernorm": true,
|
30 |
+
"max_seq_len": 2048,
|
31 |
+
"mlp_ratio": 4,
|
32 |
+
"model_type": "replit_lm",
|
33 |
+
"n_heads": 32,
|
34 |
+
"n_layers": 32,
|
35 |
+
"no_bias": true,
|
36 |
+
"param_init_fn": "kaiming_normal_",
|
37 |
+
"prefix_lm": false,
|
38 |
+
"resid_pdrop": 0,
|
39 |
+
"softmax_scale": null,
|
40 |
+
"tokenizer_name": "replit/replit-code-v1-3b",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.26.1",
|
43 |
+
"use_cache": false,
|
44 |
+
"verbose": 0,
|
45 |
+
"vocab_size": 32768
|
46 |
+
}
|
configuration_replit_lm.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Forked for ReplitLM"""
|
5 |
+
|
6 |
+
"""A HuggingFace-style model configuration."""
|
7 |
+
|
8 |
+
|
9 |
+
from typing import Optional, Tuple, Union
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
class ReplitLMConfig(PretrainedConfig):
|
12 |
+
model_type = 'replit_lm'
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
d_model: int = 2048,
|
17 |
+
n_heads: int = 16,
|
18 |
+
n_layers: int = 24,
|
19 |
+
mlp_ratio: int = 4,
|
20 |
+
max_seq_len: int = 2048,
|
21 |
+
vocab_size: int = 50368,
|
22 |
+
attn_pdrop: float = 0.0,
|
23 |
+
resid_pdrop: float = 0.0,
|
24 |
+
emb_pdrop: float = 0.0,
|
25 |
+
attn_impl: str = 'triton',
|
26 |
+
attn_qk_ln: bool = False,
|
27 |
+
attn_clip_qkv: Optional[float] = None,
|
28 |
+
softmax_scale: Optional[float] = None,
|
29 |
+
prefix_lm: Optional[bool] = False,
|
30 |
+
attn_uses_sequence_id: Optional[bool] = False,
|
31 |
+
alibi: bool = False,
|
32 |
+
alibi_bias_max: int = 8,
|
33 |
+
init_device: str = 'cpu',
|
34 |
+
logit_scale: Optional[Union[float, str]] = None,
|
35 |
+
no_bias: bool = False,
|
36 |
+
verbose: int = 0,
|
37 |
+
param_init_fn: str = 'kaiming_normal_',
|
38 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
39 |
+
init_std: float = 0.02,
|
40 |
+
emb_init_std: Optional[float] = None,
|
41 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float],
|
42 |
+
float]] = None,
|
43 |
+
init_gain: float = 0,
|
44 |
+
fan_mode: str = 'fan_in',
|
45 |
+
init_nonlinearity: str = 'relu',
|
46 |
+
embedding_fraction: float = 1.0,
|
47 |
+
low_precision_layernorm: bool = True,
|
48 |
+
use_cache: bool = False,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
"""The ReplitLM configuration class.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
d_model (int): The size of the embedding dimension of the model.
|
55 |
+
n_heads (int): The number of attention heads.
|
56 |
+
n_layers (int): The number of layers in the model.
|
57 |
+
mlp_ratio (int): The ratio of the up/down scale in the MLP.
|
58 |
+
max_seq_len (int): The maximum sequence length of the model.
|
59 |
+
vocab_size (int): The size of the vocabulary.
|
60 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
61 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
62 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
63 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
64 |
+
attn_qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
65 |
+
attn_clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
66 |
+
this value.
|
67 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
68 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
69 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
70 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
71 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
72 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
73 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
74 |
+
which sub-sequence each token belongs to.
|
75 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
76 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
77 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
78 |
+
init_device (str): The device to use for parameter initialization.
|
79 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
80 |
+
no_bias (bool): Whether to use bias in all layers.
|
81 |
+
verbose (int): The verbosity level. 0 is silent.
|
82 |
+
param_init_fn (str): The parameter initialization scheme to use. One of 'default_', 'baseline_', 'kaiming_uniform_',
|
83 |
+
'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or 'xavier_normal_'.
|
84 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
85 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
86 |
+
if using the baseline_ parameter initialization scheme.
|
87 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
88 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
89 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
90 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
91 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
92 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
93 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
94 |
+
low_precision_layernorm (bool): Whether to use low precision layer normalization.
|
95 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
96 |
+
"""
|
97 |
+
self.d_model = d_model
|
98 |
+
self.n_heads = n_heads
|
99 |
+
self.n_layers = n_layers
|
100 |
+
self.mlp_ratio = mlp_ratio
|
101 |
+
self.max_seq_len = max_seq_len
|
102 |
+
self.vocab_size = vocab_size
|
103 |
+
self.attn_pdrop = attn_pdrop
|
104 |
+
self.resid_pdrop = resid_pdrop
|
105 |
+
self.emb_pdrop = emb_pdrop
|
106 |
+
self.attn_impl = attn_impl
|
107 |
+
self.attn_qk_ln = attn_qk_ln
|
108 |
+
self.attn_clip_qkv = attn_clip_qkv
|
109 |
+
self.softmax_scale = softmax_scale
|
110 |
+
self.prefix_lm = prefix_lm
|
111 |
+
self.attn_uses_sequence_id = attn_uses_sequence_id
|
112 |
+
self.alibi = alibi
|
113 |
+
self.alibi_bias_max = alibi_bias_max
|
114 |
+
self.init_device = init_device
|
115 |
+
self.logit_scale = logit_scale
|
116 |
+
self.no_bias = no_bias
|
117 |
+
self.verbose = verbose
|
118 |
+
self.param_init_fn = param_init_fn
|
119 |
+
self.init_div_is_residual = init_div_is_residual
|
120 |
+
self.init_std = init_std
|
121 |
+
self.emb_init_std = emb_init_std
|
122 |
+
self.emb_init_uniform_lim = emb_init_uniform_lim
|
123 |
+
self.init_std = init_std
|
124 |
+
self.init_gain = init_gain
|
125 |
+
self.fan_mode = fan_mode
|
126 |
+
self.init_nonlinearity = init_nonlinearity
|
127 |
+
self.embedding_fraction = embedding_fraction
|
128 |
+
self.low_precision_layernorm = low_precision_layernorm
|
129 |
+
self.use_cache = use_cache
|
130 |
+
if 'name' in kwargs:
|
131 |
+
del kwargs['name']
|
132 |
+
if 'loss_fn' in kwargs:
|
133 |
+
del kwargs['loss_fn']
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
|
136 |
+
self._validate_config()
|
137 |
+
|
138 |
+
def _validate_config(self):
|
139 |
+
if self.d_model % self.n_heads != 0:
|
140 |
+
raise ValueError('d_model must be divisible by n_heads')
|
141 |
+
if any(prob < 0 or prob > 1
|
142 |
+
for prob in [self.attn_pdrop, self.resid_pdrop, self.emb_pdrop]):
|
143 |
+
raise ValueError(
|
144 |
+
'attn_pdrop, resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1'
|
145 |
+
)
|
146 |
+
if self.attn_impl not in ['torch', 'flash', 'triton']:
|
147 |
+
raise ValueError(f'Unknown attn_impl={self.attn_impl}')
|
148 |
+
if self.prefix_lm and self.attn_impl not in ['torch', 'triton']:
|
149 |
+
raise NotImplementedError(
|
150 |
+
'prefix_lm only implemented with torch and triton attention.')
|
151 |
+
if self.alibi and self.attn_impl not in ['torch', 'triton']:
|
152 |
+
raise NotImplementedError(
|
153 |
+
'alibi only implemented with torch and triton attention.')
|
154 |
+
if self.attn_uses_sequence_id and self.attn_impl not in [
|
155 |
+
'torch', 'triton'
|
156 |
+
]:
|
157 |
+
raise NotImplementedError(
|
158 |
+
'attn_uses_sequence_id only implemented with torch and triton attention.'
|
159 |
+
)
|
160 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
161 |
+
raise ValueError(
|
162 |
+
'model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!'
|
163 |
+
)
|
164 |
+
if isinstance(self.logit_scale,
|
165 |
+
str) and self.logit_scale != 'inv_sqrt_d_model':
|
166 |
+
raise ValueError(
|
167 |
+
f"{self.logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
168 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.26.1",
|
4 |
+
"use_cache": false
|
5 |
+
}
|
gpt_blocks.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""GPT Blocks used for the GPT Model."""
|
5 |
+
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from .attention import MultiheadAttention
|
12 |
+
from .low_precision_layernorm import LPLayerNorm
|
13 |
+
|
14 |
+
|
15 |
+
class GPTMLP(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self,
|
18 |
+
d_model: int,
|
19 |
+
mlp_ratio: int,
|
20 |
+
device: Optional[str] = None):
|
21 |
+
super().__init__()
|
22 |
+
self.mlp_up = nn.Linear(d_model, mlp_ratio * d_model, device=device)
|
23 |
+
self.mlp_act = nn.GELU(approximate='none')
|
24 |
+
self.mlp_down = nn.Linear(mlp_ratio * d_model, d_model, device=device)
|
25 |
+
self.mlp_down._is_residual = True # type: ignore
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.mlp_down(self.mlp_act(self.mlp_up(x)))
|
29 |
+
|
30 |
+
|
31 |
+
class GPTBlock(nn.Module):
|
32 |
+
|
33 |
+
def __init__(self,
|
34 |
+
attn_impl: str,
|
35 |
+
d_model: int,
|
36 |
+
n_heads: int,
|
37 |
+
mlp_ratio: int,
|
38 |
+
attn_clip_qkv: Optional[float] = None,
|
39 |
+
attn_qk_ln: bool = False,
|
40 |
+
softmax_scale: Optional[float] = None,
|
41 |
+
attn_pdrop: float = 0.0,
|
42 |
+
alibi: bool = False,
|
43 |
+
resid_pdrop: float = 0.0,
|
44 |
+
low_precision_layernorm: bool = False,
|
45 |
+
device: Optional[str] = None,
|
46 |
+
**kwargs):
|
47 |
+
del kwargs # unused, just to capture any extra args from the config
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
51 |
+
|
52 |
+
self.ln_1 = layernorm_class(d_model, device=device)
|
53 |
+
self.attn = MultiheadAttention(
|
54 |
+
attn_impl=attn_impl,
|
55 |
+
attn_clip_qkv=attn_clip_qkv,
|
56 |
+
attn_qk_ln=attn_qk_ln,
|
57 |
+
softmax_scale=softmax_scale,
|
58 |
+
attn_pdrop=attn_pdrop,
|
59 |
+
d_model=d_model,
|
60 |
+
n_heads=n_heads,
|
61 |
+
device=device,
|
62 |
+
)
|
63 |
+
self.ln_2 = layernorm_class(d_model, device=device)
|
64 |
+
self.mlp = GPTMLP(
|
65 |
+
d_model=d_model,
|
66 |
+
mlp_ratio=mlp_ratio,
|
67 |
+
device=device,
|
68 |
+
)
|
69 |
+
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
70 |
+
self.resid_mlp_dropout = nn.Dropout(resid_pdrop)
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
x: torch.Tensor,
|
75 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
76 |
+
attn_bias: Optional[torch.Tensor] = None,
|
77 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
78 |
+
is_causal: bool = True,
|
79 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
80 |
+
a = self.ln_1(x)
|
81 |
+
b, _, past_key_value = self.attn(a,
|
82 |
+
past_key_value=past_key_value,
|
83 |
+
attn_bias=attn_bias,
|
84 |
+
attention_mask=attention_mask,
|
85 |
+
is_causal=is_causal)
|
86 |
+
x = x + self.resid_attn_dropout(b)
|
87 |
+
m = self.ln_2(x)
|
88 |
+
n = self.mlp(m)
|
89 |
+
x = x + self.resid_mlp_dropout(n)
|
90 |
+
return x, past_key_value
|
low_precision_layernorm.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
class LPLayerNorm(torch.nn.LayerNorm):
|
6 |
+
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
7 |
+
super().__init__(
|
8 |
+
normalized_shape=normalized_shape,
|
9 |
+
eps=eps,
|
10 |
+
elementwise_affine=elementwise_affine,
|
11 |
+
device=device,
|
12 |
+
dtype=dtype,
|
13 |
+
)
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
module_device = x.device
|
17 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
18 |
+
downcast_weight = _cast_if_autocast_enabled(
|
19 |
+
self.weight) if self.weight is not None else self.weight
|
20 |
+
downcast_bias = _cast_if_autocast_enabled(
|
21 |
+
self.bias) if self.bias is not None else self.bias
|
22 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
23 |
+
return F.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
24 |
+
|
25 |
+
|
26 |
+
def _cast_if_autocast_enabled(tensor):
|
27 |
+
if torch.is_autocast_enabled():
|
28 |
+
if tensor.device.type == 'cuda':
|
29 |
+
dtype = torch.get_autocast_gpu_dtype()
|
30 |
+
elif tensor.device.type == 'cpu':
|
31 |
+
dtype = torch.get_autocast_cpu_dtype()
|
32 |
+
else:
|
33 |
+
raise NotImplementedError()
|
34 |
+
return tensor.to(dtype=dtype)
|
35 |
+
return tensor
|
param_init_fns.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from collections.abc import Sequence
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
|
13 |
+
def torch_default_param_init_fn_(
|
14 |
+
module: nn.Module,
|
15 |
+
verbose: int = 0,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
del kwargs # unused, just to capture any extra args from the config
|
19 |
+
if verbose > 1:
|
20 |
+
warnings.warn(
|
21 |
+
f"Initializing network using module's reset_parameters attribute")
|
22 |
+
|
23 |
+
if hasattr(module, 'reset_parameters'):
|
24 |
+
module.reset_parameters() # type: ignore
|
25 |
+
|
26 |
+
|
27 |
+
def fused_init_helper_(module: nn.Module, init_fn_):
|
28 |
+
# parameter initialization is often based on the parameters shape.
|
29 |
+
# If a layer is fused, initialization should be based on the shapes
|
30 |
+
# of the original tensor instead of the shape of the fused tensor.
|
31 |
+
# Layers which are fused should have the _fused attibute defined.
|
32 |
+
# The first element of _fused is the dimension along which the tensor is fused.
|
33 |
+
# This is followed by an iterable of split indices."
|
34 |
+
|
35 |
+
_fused = getattr(module, '_fused', None)
|
36 |
+
|
37 |
+
if _fused is None:
|
38 |
+
raise RuntimeError(f'Internal logic error')
|
39 |
+
|
40 |
+
dim, splits = _fused
|
41 |
+
splits = (0, *splits, module.weight.size(dim)) # type: ignore
|
42 |
+
for s, e in zip(splits[:-1], splits[1:]):
|
43 |
+
slice_indices = [slice(None)] * module.weight.ndim # type: ignore
|
44 |
+
slice_indices[dim] = slice(s, e)
|
45 |
+
init_fn_(module.weight[slice_indices]) # type: ignore
|
46 |
+
|
47 |
+
|
48 |
+
def generic_param_init_fn_(
|
49 |
+
module: nn.Module,
|
50 |
+
init_fn_,
|
51 |
+
n_layers: int,
|
52 |
+
d_model: Optional[int] = None,
|
53 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
54 |
+
emb_init_std: Optional[float] = None,
|
55 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
56 |
+
verbose: int = 0,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
del kwargs # unused, just to capture any extra args from the config
|
60 |
+
if verbose > 1:
|
61 |
+
warnings.warn(
|
62 |
+
f'If model has bias parameters they are initialized to 0.')
|
63 |
+
|
64 |
+
# enable user to divide _is_residual weights by
|
65 |
+
# a value which defaults to math.sqrt(2 * cfg.n_layers)
|
66 |
+
init_div_is_residual = init_div_is_residual
|
67 |
+
|
68 |
+
if init_div_is_residual is False:
|
69 |
+
# not used, for pyright
|
70 |
+
div_is_residual = 1.0
|
71 |
+
elif init_div_is_residual is True:
|
72 |
+
div_is_residual = math.sqrt(2 * n_layers)
|
73 |
+
elif isinstance(init_div_is_residual, float) or isinstance(
|
74 |
+
init_div_is_residual, int):
|
75 |
+
div_is_residual = init_div_is_residual
|
76 |
+
elif isinstance(init_div_is_residual,
|
77 |
+
str) and init_div_is_residual.isnumeric():
|
78 |
+
# do not trust YAML parsing to always convert numbers to numbers
|
79 |
+
div_is_residual = float(init_div_is_residual)
|
80 |
+
else:
|
81 |
+
# not used, for pyright
|
82 |
+
div_is_residual = 1.0
|
83 |
+
raise ValueError(
|
84 |
+
f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}'
|
85 |
+
)
|
86 |
+
|
87 |
+
if init_div_is_residual is not False:
|
88 |
+
if verbose > 1:
|
89 |
+
warnings.warn(
|
90 |
+
f'Initializing _is_residual layers then dividing them by {div_is_residual}.' +
|
91 |
+
f'set `init_div_is_residual: false` in model config to disable this.'
|
92 |
+
)
|
93 |
+
|
94 |
+
if isinstance(module, nn.Linear):
|
95 |
+
# Linear
|
96 |
+
if hasattr(module, '_fused'):
|
97 |
+
fused_init_helper_(module, init_fn_)
|
98 |
+
else:
|
99 |
+
init_fn_(module.weight)
|
100 |
+
if module.bias is not None:
|
101 |
+
torch.nn.init.zeros_(module.bias)
|
102 |
+
|
103 |
+
if init_div_is_residual is not False and getattr(
|
104 |
+
module, '_is_residual', False):
|
105 |
+
with torch.no_grad():
|
106 |
+
module.weight.div_(div_is_residual)
|
107 |
+
|
108 |
+
elif isinstance(module, nn.Embedding):
|
109 |
+
# Embedding
|
110 |
+
if emb_init_std is not None:
|
111 |
+
std = emb_init_std
|
112 |
+
if std == 0:
|
113 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
114 |
+
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
115 |
+
if verbose > 1:
|
116 |
+
warnings.warn(
|
117 |
+
f'Embedding layer initialized using normal distribution with mean=0 and {std=}.'
|
118 |
+
)
|
119 |
+
elif emb_init_uniform_lim is not None:
|
120 |
+
lim = emb_init_uniform_lim
|
121 |
+
if isinstance(lim, Sequence):
|
122 |
+
if len(lim) > 2:
|
123 |
+
raise ValueError(
|
124 |
+
f'Uniform init requires a min and a max limit. User input: {lim}.'
|
125 |
+
)
|
126 |
+
if lim[0] == lim[1]:
|
127 |
+
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
|
128 |
+
else:
|
129 |
+
if lim == 0:
|
130 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
131 |
+
lim = [-lim, lim]
|
132 |
+
a, b = lim
|
133 |
+
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
134 |
+
if verbose > 1:
|
135 |
+
warnings.warn(
|
136 |
+
f'Embedding layer initialized using uniform distribution in range {lim}.'
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
emb_init_fn_ = init_fn_
|
140 |
+
|
141 |
+
emb_init_fn_(module.weight)
|
142 |
+
|
143 |
+
elif isinstance(module, nn.LayerNorm):
|
144 |
+
# LayerNorm
|
145 |
+
if verbose > 1:
|
146 |
+
warnings.warn(
|
147 |
+
f'LayerNorm gamma weights are set to 1. If the layer has a bias it is initialized to 0.'
|
148 |
+
)
|
149 |
+
torch.nn.init.ones_(module.weight)
|
150 |
+
if module.bias is not None:
|
151 |
+
torch.nn.init.zeros_(module.bias)
|
152 |
+
|
153 |
+
elif isinstance(module, nn.MultiheadAttention):
|
154 |
+
# torch's MultiheadAttention
|
155 |
+
if module._qkv_same_embed_dim:
|
156 |
+
assert module.in_proj_weight is not None
|
157 |
+
assert module.q_proj_weight is None and module.k_proj_weight is None and module.v_proj_weight is None
|
158 |
+
assert d_model is not None
|
159 |
+
# in_proj_weight is actually 3 layers and should be split up for width based init
|
160 |
+
_d = d_model
|
161 |
+
splits = (0, _d, 2 * _d, 3 * _d)
|
162 |
+
for s, e in zip(splits[:-1], splits[1:]):
|
163 |
+
init_fn_(module.in_proj_weight[s:e])
|
164 |
+
else:
|
165 |
+
assert module.q_proj_weight is not None and module.k_proj_weight is not None and module.v_proj_weight is not None
|
166 |
+
assert module.in_proj_weight is None
|
167 |
+
init_fn_(module.q_proj_weight)
|
168 |
+
init_fn_(module.k_proj_weight)
|
169 |
+
init_fn_(module.v_proj_weight)
|
170 |
+
|
171 |
+
# bias
|
172 |
+
if module.in_proj_bias is not None:
|
173 |
+
torch.nn.init.zeros_(module.in_proj_bias)
|
174 |
+
if module.bias_k is not None:
|
175 |
+
torch.nn.init.zeros_(module.bias_k)
|
176 |
+
if module.bias_v is not None:
|
177 |
+
torch.nn.init.zeros_(module.bias_v)
|
178 |
+
|
179 |
+
# out proj
|
180 |
+
init_fn_(module.out_proj.weight)
|
181 |
+
if init_div_is_residual is not False and getattr(
|
182 |
+
module.out_proj, '_is_residual', False):
|
183 |
+
with torch.no_grad():
|
184 |
+
module.out_proj.weight.div_(div_is_residual)
|
185 |
+
if module.out_proj.bias is not None:
|
186 |
+
torch.nn.init.zeros_(module.out_proj.bias)
|
187 |
+
|
188 |
+
else:
|
189 |
+
for _ in module.parameters(recurse=False):
|
190 |
+
# raise error if uninitialized module has any parameters
|
191 |
+
raise NotImplementedError(
|
192 |
+
f'{module.__class__.__name__} parameters are not initialized by param_init_fn.'
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
def _normal_init_(std, mean=0.0):
|
197 |
+
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
198 |
+
|
199 |
+
|
200 |
+
def _normal_param_init_fn_(
|
201 |
+
module: nn.Module,
|
202 |
+
std: float,
|
203 |
+
n_layers: int,
|
204 |
+
d_model: Optional[int] = None,
|
205 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
206 |
+
emb_init_std: Optional[float] = None,
|
207 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
208 |
+
verbose: int = 0,
|
209 |
+
**kwargs,
|
210 |
+
):
|
211 |
+
del kwargs # unused, just to capture any extra args from the config
|
212 |
+
init_fn_ = _normal_init_(std=std)
|
213 |
+
|
214 |
+
if verbose > 1:
|
215 |
+
warnings.warn(
|
216 |
+
f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
217 |
+
|
218 |
+
generic_param_init_fn_(
|
219 |
+
module=module,
|
220 |
+
init_fn_=init_fn_,
|
221 |
+
d_model=d_model,
|
222 |
+
n_layers=n_layers,
|
223 |
+
init_div_is_residual=init_div_is_residual,
|
224 |
+
emb_init_std=emb_init_std,
|
225 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
226 |
+
verbose=verbose,
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
def baseline_param_init_fn_(
|
231 |
+
module: nn.Module,
|
232 |
+
init_std: float,
|
233 |
+
n_layers: int,
|
234 |
+
d_model: Optional[int] = None,
|
235 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
236 |
+
emb_init_std: Optional[float] = None,
|
237 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
238 |
+
verbose: int = 0,
|
239 |
+
**kwargs,
|
240 |
+
):
|
241 |
+
del kwargs # unused, just to capture any extra args from the config
|
242 |
+
if init_std is None:
|
243 |
+
raise ValueError(
|
244 |
+
'You must set model.init_std to a float value to use the default initialization scheme.'
|
245 |
+
)
|
246 |
+
_normal_param_init_fn_(
|
247 |
+
module=module,
|
248 |
+
std=init_std,
|
249 |
+
d_model=d_model,
|
250 |
+
n_layers=n_layers,
|
251 |
+
init_div_is_residual=init_div_is_residual,
|
252 |
+
emb_init_std=emb_init_std,
|
253 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
254 |
+
verbose=verbose,
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def small_param_init_fn_(
|
259 |
+
module: nn.Module,
|
260 |
+
n_layers: int,
|
261 |
+
d_model: int,
|
262 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
263 |
+
emb_init_std: Optional[float] = None,
|
264 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
265 |
+
verbose: int = 0,
|
266 |
+
**kwargs,
|
267 |
+
):
|
268 |
+
del kwargs # unused, just to capture any extra args from the config
|
269 |
+
# very close to kaiming normal
|
270 |
+
# from Transformers without Tears (2019) - Nguyen & Salazar
|
271 |
+
std = math.sqrt(2 / (5 * d_model))
|
272 |
+
_normal_param_init_fn_(
|
273 |
+
module=module,
|
274 |
+
std=std,
|
275 |
+
d_model=d_model,
|
276 |
+
n_layers=n_layers,
|
277 |
+
init_div_is_residual=init_div_is_residual,
|
278 |
+
emb_init_std=emb_init_std,
|
279 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
280 |
+
verbose=verbose,
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def neox_param_init_fn_(
|
285 |
+
module: nn.Module,
|
286 |
+
n_layers: int,
|
287 |
+
d_model: int,
|
288 |
+
emb_init_std: Optional[float] = None,
|
289 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
290 |
+
verbose: int = 0,
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
"""From section 2.3.1 of GPT-NeoX-20B:
|
294 |
+
|
295 |
+
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
296 |
+
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
|
297 |
+
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
|
298 |
+
"""
|
299 |
+
del kwargs # unused, just to capture any extra args from the config
|
300 |
+
residual_div = n_layers / math.sqrt(10) # small std / wang std
|
301 |
+
|
302 |
+
if verbose > 1:
|
303 |
+
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
304 |
+
|
305 |
+
small_param_init_fn_(
|
306 |
+
module=module,
|
307 |
+
d_model=d_model,
|
308 |
+
n_layers=n_layers,
|
309 |
+
init_div_is_residual=residual_div,
|
310 |
+
emb_init_std=emb_init_std,
|
311 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
312 |
+
verbose=verbose,
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
def kaiming_uniform_param_init_fn_(
|
317 |
+
module: nn.Module,
|
318 |
+
n_layers: int,
|
319 |
+
d_model: Optional[int] = None,
|
320 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
321 |
+
emb_init_std: Optional[float] = None,
|
322 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
323 |
+
init_gain: float = 0,
|
324 |
+
fan_mode: str = 'fan_in',
|
325 |
+
init_nonlinearity: str = 'leaky_relu',
|
326 |
+
verbose: int = 0,
|
327 |
+
**kwargs,
|
328 |
+
):
|
329 |
+
del kwargs # unused, just to capture any extra args from the config
|
330 |
+
|
331 |
+
if verbose > 1:
|
332 |
+
warnings.warn(
|
333 |
+
f'Using nn.init.kaiming_uniform_ init fn with parameters: ' +
|
334 |
+
f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}'
|
335 |
+
)
|
336 |
+
|
337 |
+
kaiming_uniform_ = partial(nn.init.kaiming_uniform_,
|
338 |
+
a=init_gain,
|
339 |
+
mode=fan_mode,
|
340 |
+
nonlinearity=init_nonlinearity)
|
341 |
+
|
342 |
+
generic_param_init_fn_(
|
343 |
+
module=module,
|
344 |
+
init_fn_=kaiming_uniform_,
|
345 |
+
d_model=d_model,
|
346 |
+
n_layers=n_layers,
|
347 |
+
init_div_is_residual=init_div_is_residual,
|
348 |
+
emb_init_std=emb_init_std,
|
349 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
350 |
+
verbose=verbose,
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
def kaiming_normal_param_init_fn_(
|
355 |
+
module: nn.Module,
|
356 |
+
n_layers: int,
|
357 |
+
d_model: Optional[int] = None,
|
358 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
359 |
+
emb_init_std: Optional[float] = None,
|
360 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
361 |
+
init_gain: float = 0,
|
362 |
+
fan_mode: str = 'fan_in',
|
363 |
+
init_nonlinearity: str = 'leaky_relu',
|
364 |
+
verbose: int = 0,
|
365 |
+
**kwargs,
|
366 |
+
):
|
367 |
+
del kwargs # unused, just to capture any extra args from the config
|
368 |
+
|
369 |
+
if verbose > 1:
|
370 |
+
warnings.warn(
|
371 |
+
f'Using nn.init.kaiming_normal_ init fn with parameters: ' +
|
372 |
+
f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}'
|
373 |
+
)
|
374 |
+
|
375 |
+
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_,
|
376 |
+
a=init_gain,
|
377 |
+
mode=fan_mode,
|
378 |
+
nonlinearity=init_nonlinearity)
|
379 |
+
|
380 |
+
generic_param_init_fn_(
|
381 |
+
module=module,
|
382 |
+
init_fn_=kaiming_normal_,
|
383 |
+
d_model=d_model,
|
384 |
+
n_layers=n_layers,
|
385 |
+
init_div_is_residual=init_div_is_residual,
|
386 |
+
emb_init_std=emb_init_std,
|
387 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
388 |
+
verbose=verbose,
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
def xavier_uniform_param_init_fn_(
|
393 |
+
module: nn.Module,
|
394 |
+
n_layers: int,
|
395 |
+
d_model: Optional[int] = None,
|
396 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
397 |
+
emb_init_std: Optional[float] = None,
|
398 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
399 |
+
init_gain: float = 0,
|
400 |
+
verbose: int = 0,
|
401 |
+
**kwargs,
|
402 |
+
):
|
403 |
+
del kwargs # unused, just to capture any extra args from the config
|
404 |
+
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
405 |
+
|
406 |
+
if verbose > 1:
|
407 |
+
warnings.warn(
|
408 |
+
f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' +
|
409 |
+
f'gain={init_gain}'
|
410 |
+
)
|
411 |
+
|
412 |
+
generic_param_init_fn_(
|
413 |
+
module=module,
|
414 |
+
init_fn_=xavier_uniform_,
|
415 |
+
d_model=d_model,
|
416 |
+
n_layers=n_layers,
|
417 |
+
init_div_is_residual=init_div_is_residual,
|
418 |
+
emb_init_std=emb_init_std,
|
419 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
420 |
+
verbose=verbose,
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
def xavier_normal_param_init_fn_(
|
425 |
+
module: nn.Module,
|
426 |
+
n_layers: int,
|
427 |
+
d_model: Optional[int] = None,
|
428 |
+
init_div_is_residual: Union[int, float, str, bool] = True,
|
429 |
+
emb_init_std: Optional[float] = None,
|
430 |
+
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
|
431 |
+
init_gain: float = 0,
|
432 |
+
verbose: int = 0,
|
433 |
+
**kwargs,
|
434 |
+
):
|
435 |
+
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
436 |
+
|
437 |
+
if verbose > 1:
|
438 |
+
warnings.warn(
|
439 |
+
f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' +
|
440 |
+
f'gain={init_gain}'
|
441 |
+
)
|
442 |
+
|
443 |
+
generic_param_init_fn_(
|
444 |
+
module=module,
|
445 |
+
init_fn_=xavier_normal_,
|
446 |
+
d_model=d_model,
|
447 |
+
n_layers=n_layers,
|
448 |
+
init_div_is_residual=init_div_is_residual,
|
449 |
+
emb_init_std=emb_init_std,
|
450 |
+
emb_init_uniform_lim=emb_init_uniform_lim,
|
451 |
+
verbose=verbose,
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
MODEL_INIT_REGISTRY = {
|
456 |
+
'default_': torch_default_param_init_fn_,
|
457 |
+
'baseline_': baseline_param_init_fn_,
|
458 |
+
'kaiming_uniform_': kaiming_uniform_param_init_fn_,
|
459 |
+
'kaiming_normal_': kaiming_normal_param_init_fn_,
|
460 |
+
'neox_init_': neox_param_init_fn_,
|
461 |
+
'small_init_': small_param_init_fn_,
|
462 |
+
'xavier_uniform_': xavier_uniform_param_init_fn_,
|
463 |
+
'xavier_normal_': xavier_normal_param_init_fn_,
|
464 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6516d02ef00bc903aad7d05dc35607cff7e4c7335d4f1bf424cdcb6695cd3e86
|
3 |
+
size 10402658381
|
replit_lm.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Forked from the MosaicGPT model class from the Mosaic Examples codebase of date May 1st, 2023.
|
5 |
+
Permalink: https://github.com/mosaicml/examples/blob/52cd4fef69497f225a034fcd10692f8613732d10/examples/llm/src/models/mosaic_gpt/mosaic_gpt.py
|
6 |
+
"""
|
7 |
+
|
8 |
+
"""A simple, flexible implementation of a GPT model.
|
9 |
+
|
10 |
+
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
11 |
+
"""
|
12 |
+
|
13 |
+
import math
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from transformers import PreTrainedModel
|
20 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
from .attention import attn_bias as module_attn_bias, attn_bias_shape as module_attn_bias_shape
|
24 |
+
from .gpt_blocks import GPTBlock
|
25 |
+
from .configuration_replit_lm import \
|
26 |
+
ReplitLMConfig
|
27 |
+
from .param_init_fns import MODEL_INIT_REGISTRY
|
28 |
+
from .low_precision_layernorm import LPLayerNorm
|
29 |
+
|
30 |
+
|
31 |
+
class ReplitLM(PreTrainedModel):
|
32 |
+
config_class = ReplitLMConfig
|
33 |
+
base_model_prefix = 'replit_lm'
|
34 |
+
|
35 |
+
def __init__(self, config: ReplitLMConfig):
|
36 |
+
super().__init__(config)
|
37 |
+
|
38 |
+
if config.attn_impl == 'flash' and config.alibi:
|
39 |
+
raise RuntimeError("ALiBi is not supported with flash attention. Please use triton or torch.")
|
40 |
+
|
41 |
+
self.attn_impl = config.attn_impl
|
42 |
+
self.prefix_lm = config.prefix_lm
|
43 |
+
self.attn_uses_sequence_id = config.attn_uses_sequence_id
|
44 |
+
self.alibi = config.alibi
|
45 |
+
self.alibi_bias_max = config.alibi_bias_max
|
46 |
+
|
47 |
+
layernorm_class = LPLayerNorm if config.low_precision_layernorm else nn.LayerNorm
|
48 |
+
|
49 |
+
# CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414)
|
50 |
+
# both report this helping with stabilizing training
|
51 |
+
self.embedding_fraction = config.embedding_fraction
|
52 |
+
|
53 |
+
self.transformer = nn.ModuleDict({
|
54 |
+
'wte':
|
55 |
+
nn.Embedding(config.vocab_size,
|
56 |
+
config.d_model,
|
57 |
+
device=config.init_device)
|
58 |
+
})
|
59 |
+
if not self.alibi:
|
60 |
+
self.transformer.update({
|
61 |
+
'wpe':
|
62 |
+
nn.Embedding(config.max_seq_len,
|
63 |
+
config.d_model,
|
64 |
+
device=config.init_device)
|
65 |
+
})
|
66 |
+
self.transformer.update({'emb_drop': nn.Dropout(config.emb_pdrop)})
|
67 |
+
self.transformer.update({
|
68 |
+
'blocks':
|
69 |
+
nn.ModuleList([
|
70 |
+
GPTBlock(device=config.init_device,
|
71 |
+
**config.to_dict())
|
72 |
+
for _ in range(config.n_layers)
|
73 |
+
])
|
74 |
+
})
|
75 |
+
self.transformer.update({
|
76 |
+
'ln_f': layernorm_class(config.d_model, device=config.init_device)
|
77 |
+
})
|
78 |
+
|
79 |
+
# enables scaling output logits; similar to a softmax "temperature"
|
80 |
+
# PaLM paper uses scale 1/sqrt(config.d_model)
|
81 |
+
self.logit_scale = None
|
82 |
+
if config.logit_scale is not None:
|
83 |
+
logit_scale = config.logit_scale
|
84 |
+
if isinstance(logit_scale, str):
|
85 |
+
if logit_scale == 'inv_sqrt_d_model':
|
86 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
87 |
+
else:
|
88 |
+
raise ValueError(
|
89 |
+
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
90 |
+
)
|
91 |
+
self.logit_scale = logit_scale
|
92 |
+
|
93 |
+
if config.init_device != 'meta':
|
94 |
+
print(
|
95 |
+
f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.'
|
96 |
+
)
|
97 |
+
self.apply(self.param_init_fn)
|
98 |
+
|
99 |
+
self.is_causal = not self.prefix_lm
|
100 |
+
|
101 |
+
# define attn mask
|
102 |
+
self._attn_bias_initialized = False
|
103 |
+
self.attn_bias = None
|
104 |
+
self.attn_bias_shape = module_attn_bias_shape(
|
105 |
+
self.attn_impl,
|
106 |
+
config.n_heads,
|
107 |
+
config.max_seq_len,
|
108 |
+
self.alibi,
|
109 |
+
prefix_lm=self.prefix_lm,
|
110 |
+
causal=self.is_causal,
|
111 |
+
use_sequence_id=self.attn_uses_sequence_id)
|
112 |
+
|
113 |
+
if config.no_bias:
|
114 |
+
for module in self.modules():
|
115 |
+
if hasattr(module, 'bias') and isinstance(
|
116 |
+
module.bias, nn.Parameter):
|
117 |
+
if config.verbose:
|
118 |
+
print(f'Removing bias ({module.bias}) from {module}.')
|
119 |
+
module.register_parameter('bias', None)
|
120 |
+
|
121 |
+
if config.verbose and config.verbose > 2:
|
122 |
+
print(self)
|
123 |
+
|
124 |
+
@torch.no_grad()
|
125 |
+
def _attn_bias(self,
|
126 |
+
device,
|
127 |
+
dtype,
|
128 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
129 |
+
prefix_mask: Optional[torch.ByteTensor] = None,
|
130 |
+
sequence_id: Optional[torch.LongTensor] = None):
|
131 |
+
if not self._attn_bias_initialized:
|
132 |
+
if self.attn_bias_shape:
|
133 |
+
self.attn_bias = torch.zeros(self.attn_bias_shape,
|
134 |
+
device=device,
|
135 |
+
dtype=dtype)
|
136 |
+
self.attn_bias = module_attn_bias(
|
137 |
+
self.attn_impl,
|
138 |
+
self.attn_bias,
|
139 |
+
self.config.n_heads,
|
140 |
+
self.config.max_seq_len,
|
141 |
+
causal=self.is_causal,
|
142 |
+
alibi=self.alibi,
|
143 |
+
alibi_bias_max=self.alibi_bias_max)
|
144 |
+
self._attn_bias_initialized = True
|
145 |
+
|
146 |
+
# flash does not support prefix_lm and will incorporate any
|
147 |
+
# attention_mask inside the attention module
|
148 |
+
if self.attn_impl == 'flash':
|
149 |
+
return self.attn_bias, attention_mask
|
150 |
+
|
151 |
+
attn_bias = self.attn_bias
|
152 |
+
|
153 |
+
# If using torch or triton, we incorporate the prefix_mask (if appropriate)
|
154 |
+
if self.prefix_lm:
|
155 |
+
assert isinstance(attn_bias, torch.Tensor) # pyright
|
156 |
+
assert isinstance(prefix_mask, torch.Tensor) # pyright
|
157 |
+
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
158 |
+
|
159 |
+
# If using torch or triton, we incorporate sequence_id (if appropriate)
|
160 |
+
if self.attn_uses_sequence_id and sequence_id is not None:
|
161 |
+
assert isinstance(attn_bias, torch.Tensor) # pyright
|
162 |
+
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
163 |
+
|
164 |
+
# If using torch or triton, we incorporate attention_mask. This will output
|
165 |
+
# None in place of attention_mask since it will not be further needed in the
|
166 |
+
# attention modules.
|
167 |
+
if attention_mask is not None:
|
168 |
+
s_k = attention_mask.shape[-1]
|
169 |
+
if attn_bias is None:
|
170 |
+
attn_bias = torch.zeros((1, 1, 1, s_k),
|
171 |
+
device=device,
|
172 |
+
dtype=dtype)
|
173 |
+
else:
|
174 |
+
attn_bias = attn_bias[:, :, :, -s_k:]
|
175 |
+
if prefix_mask is not None and (attention_mask.shape !=
|
176 |
+
prefix_mask.shape):
|
177 |
+
raise ValueError(
|
178 |
+
f'attention_mask shape={attention_mask.shape} ' +\
|
179 |
+
f'and prefix_mask shape={prefix_mask.shape} are not equal.'
|
180 |
+
)
|
181 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
182 |
+
attn_bias = attn_bias.masked_fill(
|
183 |
+
~attention_mask.view(-1, 1, 1, s_k), min_val)
|
184 |
+
|
185 |
+
return attn_bias, None
|
186 |
+
|
187 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor,
|
188 |
+
prefix_mask: torch.Tensor):
|
189 |
+
s_k, s_q = attn_bias.shape[-2:]
|
190 |
+
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len):
|
191 |
+
raise ValueError(
|
192 |
+
'attn_bias does not match the expected shape. ' +\
|
193 |
+
f'The last two dimensions should both be {self.config.max_length} ' +\
|
194 |
+
f'but are {s_k} and {s_q}.'
|
195 |
+
)
|
196 |
+
seq_len = prefix_mask.shape[-1]
|
197 |
+
if seq_len > self.config.max_seq_len:
|
198 |
+
raise ValueError(
|
199 |
+
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
|
200 |
+
)
|
201 |
+
|
202 |
+
# select seq_len subset of attn mask
|
203 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
204 |
+
|
205 |
+
# Mix the causal max and the bidirectional mask to get the full
|
206 |
+
# allowable attention (i.e. full = not accounting for padding yet)
|
207 |
+
causal = torch.tril(
|
208 |
+
torch.ones((seq_len, seq_len),
|
209 |
+
dtype=torch.bool,
|
210 |
+
device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
211 |
+
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
212 |
+
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
213 |
+
|
214 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
215 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
216 |
+
|
217 |
+
return attn_bias
|
218 |
+
|
219 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor,
|
220 |
+
sequence_id: torch.LongTensor):
|
221 |
+
seq_len = sequence_id.shape[-1]
|
222 |
+
if seq_len > self.config.max_seq_len:
|
223 |
+
raise ValueError(
|
224 |
+
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
|
225 |
+
)
|
226 |
+
|
227 |
+
# select seq_len subset of attn mask
|
228 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
229 |
+
|
230 |
+
# Restrict attention to tokens that share the same value
|
231 |
+
# in sequence_id
|
232 |
+
cannot_attend = torch.logical_not(
|
233 |
+
torch.eq(sequence_id.view(-1, seq_len, 1),
|
234 |
+
sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
235 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
236 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
237 |
+
|
238 |
+
return attn_bias
|
239 |
+
|
240 |
+
def forward(
|
241 |
+
self,
|
242 |
+
input_ids: torch.LongTensor,
|
243 |
+
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
244 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
245 |
+
prefix_mask: Optional[torch.ByteTensor] = None,
|
246 |
+
sequence_id: Optional[torch.LongTensor] = None,
|
247 |
+
return_dict: Optional[bool] = None,
|
248 |
+
output_attentions: Optional[bool] = None,
|
249 |
+
output_hidden_states: Optional[bool] = None,
|
250 |
+
use_cache: Optional[bool] = None):
|
251 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
252 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
253 |
+
|
254 |
+
# These args are passed in by keyword in huggingface's generate function
|
255 |
+
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206
|
256 |
+
# but have not yet been fully implemented in ReplitLM
|
257 |
+
if not return_dict:
|
258 |
+
raise NotImplementedError(
|
259 |
+
'return_dict False is not implemented yet for ReplitLM')
|
260 |
+
if output_attentions:
|
261 |
+
raise NotImplementedError(
|
262 |
+
'output_attentions is not implemented yet for ReplitLM')
|
263 |
+
|
264 |
+
if attention_mask is not None and attention_mask[:, 0].sum(
|
265 |
+
) != attention_mask.shape[0] and self.training:
|
266 |
+
raise NotImplementedError(
|
267 |
+
'ReplitLM does not support training with left padding.')
|
268 |
+
|
269 |
+
if self.prefix_lm and prefix_mask is None:
|
270 |
+
raise ValueError(
|
271 |
+
'prefix_mask is a required argument when ReplitLM is configured with prefix_lm=True.'
|
272 |
+
)
|
273 |
+
|
274 |
+
if self.training:
|
275 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
276 |
+
raise ValueError(
|
277 |
+
'sequence_id is a required argument when ReplitLM is configured with attn_uses_sequence_id=True ' +\
|
278 |
+
'and the model is in train mode.'
|
279 |
+
)
|
280 |
+
elif (self.attn_uses_sequence_id is False) and (sequence_id
|
281 |
+
is not None):
|
282 |
+
warnings.warn(
|
283 |
+
'ReplitLM received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\
|
284 |
+
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.'
|
285 |
+
)
|
286 |
+
|
287 |
+
S = input_ids.size(1)
|
288 |
+
|
289 |
+
assert (
|
290 |
+
S <= self.config.max_seq_len
|
291 |
+
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
292 |
+
|
293 |
+
tok_emb = self.transformer.wte(input_ids) # type: ignore
|
294 |
+
if self.alibi:
|
295 |
+
x = tok_emb
|
296 |
+
else:
|
297 |
+
past_position = 0
|
298 |
+
if past_key_values is not None:
|
299 |
+
if len(past_key_values) != self.config.n_layers:
|
300 |
+
raise ValueError(
|
301 |
+
f'past_key_values must provide a past_key_value for each attention ' +\
|
302 |
+
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).'
|
303 |
+
)
|
304 |
+
# get the key tensor whose spec should be (batch, seq, dim), and
|
305 |
+
# collect the `seq`, so that the position embedding is shifted
|
306 |
+
past_position = past_key_values[0][0].size(1)
|
307 |
+
|
308 |
+
if S + past_position > self.config.max_seq_len:
|
309 |
+
raise ValueError(
|
310 |
+
f'Cannot forward input with past sequence length {past_position} and current sequence length '
|
311 |
+
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.'
|
312 |
+
)
|
313 |
+
pos = torch.arange(past_position,
|
314 |
+
S + past_position,
|
315 |
+
dtype=torch.long,
|
316 |
+
device=input_ids.device).unsqueeze(0)
|
317 |
+
if attention_mask is not None:
|
318 |
+
# adjust the position indices to account for padding tokens
|
319 |
+
pos = torch.clamp(pos - torch.cumsum(
|
320 |
+
(~attention_mask).to(torch.int32), dim=1)[:,
|
321 |
+
past_position:],
|
322 |
+
min=0)
|
323 |
+
|
324 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
325 |
+
x = tok_emb + pos_emb
|
326 |
+
|
327 |
+
if self.embedding_fraction == 1:
|
328 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
329 |
+
else:
|
330 |
+
# this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414
|
331 |
+
x_shrunk = (x * self.embedding_fraction) + (
|
332 |
+
x.detach() * (1 - self.embedding_fraction))
|
333 |
+
assert isinstance(self.transformer.emb_drop, nn.Module) # pyright
|
334 |
+
x = self.transformer.emb_drop(x_shrunk)
|
335 |
+
|
336 |
+
attn_bias, attention_mask = self._attn_bias(
|
337 |
+
device=x.device,
|
338 |
+
dtype=x.dtype,
|
339 |
+
attention_mask=attention_mask,
|
340 |
+
prefix_mask=prefix_mask,
|
341 |
+
sequence_id=sequence_id)
|
342 |
+
|
343 |
+
# initialize the past key values cache if it should be used
|
344 |
+
if use_cache and past_key_values is None:
|
345 |
+
past_key_values = [() for _ in range(self.config.n_layers)
|
346 |
+
] # type: ignore
|
347 |
+
|
348 |
+
all_hidden_states = () if output_hidden_states else None
|
349 |
+
for b_idx, block in enumerate(self.transformer.blocks): # type: ignore
|
350 |
+
if output_hidden_states:
|
351 |
+
assert all_hidden_states is not None # pyright
|
352 |
+
all_hidden_states = all_hidden_states + (x,)
|
353 |
+
past_key_value = past_key_values[
|
354 |
+
b_idx] if past_key_values is not None else None
|
355 |
+
x, past_key_value = block(x,
|
356 |
+
past_key_value=past_key_value,
|
357 |
+
attn_bias=attn_bias,
|
358 |
+
attention_mask=attention_mask,
|
359 |
+
is_causal=self.is_causal)
|
360 |
+
if past_key_values is not None:
|
361 |
+
past_key_values[b_idx] = past_key_value
|
362 |
+
|
363 |
+
x = self.transformer.ln_f(x) # type: ignore
|
364 |
+
|
365 |
+
# output embedding weight tied to input embedding
|
366 |
+
assert isinstance(self.transformer.wte, nn.Module) # pyright
|
367 |
+
assert isinstance(self.transformer.wte.weight, torch.Tensor) # pyright
|
368 |
+
logits = F.linear(x, self.transformer.wte.weight, None)
|
369 |
+
|
370 |
+
if self.logit_scale is not None:
|
371 |
+
if self.logit_scale == 0:
|
372 |
+
warnings.warn(
|
373 |
+
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.'
|
374 |
+
)
|
375 |
+
logits *= self.logit_scale
|
376 |
+
|
377 |
+
return CausalLMOutputWithPast(logits=logits,
|
378 |
+
past_key_values=past_key_values,
|
379 |
+
hidden_states=all_hidden_states)
|
380 |
+
|
381 |
+
# Param Initialization, needed for device='meta' fast initialization
|
382 |
+
def param_init_fn(self, module):
|
383 |
+
init_fn_name = self.config.param_init_fn
|
384 |
+
if self.config.verbose > 1:
|
385 |
+
warnings.warn(f'Using {init_fn_name} initialization.')
|
386 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module,
|
387 |
+
**self.config.to_dict())
|
388 |
+
|
389 |
+
# FSDP Wrap function
|
390 |
+
def fsdp_wrap_fn(self, module):
|
391 |
+
return isinstance(module, GPTBlock)
|
392 |
+
|
393 |
+
# Activation Checkpointing
|
394 |
+
def activation_checkpointing_fn(self, module):
|
395 |
+
return isinstance(module, GPTBlock)
|
396 |
+
|
397 |
+
def prepare_inputs_for_generation(self,
|
398 |
+
input_ids,
|
399 |
+
past_key_values=None,
|
400 |
+
inputs_embeds=None,
|
401 |
+
**kwargs):
|
402 |
+
if inputs_embeds is not None:
|
403 |
+
raise NotImplementedError(
|
404 |
+
'inputs_embeds is not implemented for ReplitLM yet')
|
405 |
+
|
406 |
+
attention_mask = kwargs['attention_mask'].bool()
|
407 |
+
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
408 |
+
raise NotImplementedError(
|
409 |
+
'ReplitLM does not support generation with right padding.')
|
410 |
+
|
411 |
+
if self.attn_uses_sequence_id and self.training:
|
412 |
+
sequence_id = torch.zeros_like(input_ids[:1])
|
413 |
+
else:
|
414 |
+
sequence_id = None
|
415 |
+
|
416 |
+
if past_key_values is not None:
|
417 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
418 |
+
|
419 |
+
if self.prefix_lm:
|
420 |
+
# Leverage a convenience of sequential generation!
|
421 |
+
prefix_mask = torch.ones_like(attention_mask)
|
422 |
+
# This requires that we're using the cache
|
423 |
+
if kwargs.get('use_cache') == False:
|
424 |
+
raise NotImplementedError(
|
425 |
+
'ReplitLM with prefix_lm=True does not support use_cache=False.'
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
prefix_mask = None
|
429 |
+
|
430 |
+
return {
|
431 |
+
'input_ids': input_ids,
|
432 |
+
'attention_mask': attention_mask,
|
433 |
+
'prefix_mask': prefix_mask,
|
434 |
+
'sequence_id': sequence_id,
|
435 |
+
'past_key_values': past_key_values,
|
436 |
+
'use_cache': kwargs.get('use_cache', True),
|
437 |
+
}
|
438 |
+
|
439 |
+
@staticmethod
|
440 |
+
def _reorder_cache(past_key_values, beam_idx):
|
441 |
+
"""Used by HuggingFace generate when using beam search with kv-caching.
|
442 |
+
|
443 |
+
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
444 |
+
for an example in transformers.
|
445 |
+
"""
|
446 |
+
reordered_past = []
|
447 |
+
for layer_past in past_key_values:
|
448 |
+
reordered_past += [
|
449 |
+
tuple(
|
450 |
+
past_state.index_select(0, beam_idx)
|
451 |
+
for past_state in layer_past)
|
452 |
+
]
|
453 |
+
return reordered_past
|
replit_lm_tokenizer.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library.
|
17 |
+
Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py
|
18 |
+
|
19 |
+
Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code v1.3b model.
|
20 |
+
"""
|
21 |
+
|
22 |
+
""" Tokenizer class for ReplitLM"""
|
23 |
+
|
24 |
+
|
25 |
+
import os
|
26 |
+
import sentencepiece as spm
|
27 |
+
from shutil import copyfile
|
28 |
+
from transformers import PreTrainedTokenizer
|
29 |
+
from typing import Any, Dict, List, Optional, Tuple
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
31 |
+
|
32 |
+
|
33 |
+
class ReplitLMTokenizer(PreTrainedTokenizer):
|
34 |
+
"""
|
35 |
+
Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
36 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_file (`str`):
|
40 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
41 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
42 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
43 |
+
The end of sequence token.
|
44 |
+
bos_token (`str`, *optional*, defaults to `None`):
|
45 |
+
The begin of sequence token.
|
46 |
+
unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
|
47 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
48 |
+
token instead.
|
49 |
+
pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
|
50 |
+
The token used for padding, for example when batching sequences of different lengths.
|
51 |
+
sp_model_kwargs (`dict`, *optional*):
|
52 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
53 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
54 |
+
to set:
|
55 |
+
- `enable_sampling`: Enable subword regularization.
|
56 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
57 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
58 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
59 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
60 |
+
using forward-filtering-and-backward-sampling algorithm.
|
61 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
62 |
+
BPE-dropout.
|
63 |
+
"""
|
64 |
+
|
65 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
66 |
+
prefix_tokens: List[int] = []
|
67 |
+
model_input_names = ["input_ids", "attention_mask"]
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
vocab_file,
|
72 |
+
bos_token=None,
|
73 |
+
eos_token="<|endoftext|>",
|
74 |
+
unk_token="<|unk|>",
|
75 |
+
pad_token="<|pad|>",
|
76 |
+
sep_token=None,
|
77 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
78 |
+
**kwargs,
|
79 |
+
) -> None:
|
80 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
81 |
+
|
82 |
+
# Add extra_ids to the special token list
|
83 |
+
super().__init__(
|
84 |
+
bos_token=bos_token,
|
85 |
+
eos_token=eos_token,
|
86 |
+
unk_token=unk_token,
|
87 |
+
pad_token=pad_token,
|
88 |
+
sep_token=sep_token,
|
89 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
90 |
+
**kwargs,
|
91 |
+
)
|
92 |
+
|
93 |
+
self.vocab_file = vocab_file
|
94 |
+
|
95 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
96 |
+
self.sp_model.Load(vocab_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def vocab_size(self):
|
100 |
+
return self.sp_model.get_piece_size()
|
101 |
+
|
102 |
+
def get_vocab(self):
|
103 |
+
vocab = {self.convert_ids_to_tokens(
|
104 |
+
i): i for i in range(self.vocab_size)}
|
105 |
+
vocab.update(self.added_tokens_encoder)
|
106 |
+
return vocab
|
107 |
+
|
108 |
+
def __getstate__(self):
|
109 |
+
state = self.__dict__.copy()
|
110 |
+
state["sp_model"] = None
|
111 |
+
return state
|
112 |
+
|
113 |
+
def __setstate__(self, d):
|
114 |
+
self.__dict__ = d
|
115 |
+
|
116 |
+
# for backward compatibility
|
117 |
+
if not hasattr(self, "sp_model_kwargs"):
|
118 |
+
self.sp_model_kwargs = {}
|
119 |
+
|
120 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
121 |
+
self.sp_model.load(self.vocab_file)
|
122 |
+
|
123 |
+
def _tokenize(self, text: str) -> List[str]:
|
124 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
125 |
+
return self.sp_model.encode(text, out_type=str)
|
126 |
+
|
127 |
+
def _convert_token_to_id(self, token):
|
128 |
+
"""Converts a token (str) in an id using the vocab."""
|
129 |
+
return self.sp_model.piece_to_id(token)
|
130 |
+
|
131 |
+
def _convert_id_to_token(self, index):
|
132 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
133 |
+
token = self.sp_model.id_to_piece(index)
|
134 |
+
return token
|
135 |
+
|
136 |
+
def convert_tokens_to_string(self, tokens):
|
137 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
138 |
+
return self.sp_model.decode(tokens)
|
139 |
+
|
140 |
+
def save_vocabulary(self,
|
141 |
+
save_directory: str,
|
142 |
+
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
143 |
+
|
144 |
+
if not os.path.isdir(save_directory):
|
145 |
+
raise ValueError(
|
146 |
+
f"Vocabulary path ({save_directory}) should be a directory")
|
147 |
+
|
148 |
+
out_vocab_file = os.path.join(
|
149 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") +
|
150 |
+
VOCAB_FILES_NAMES["vocab_file"])
|
151 |
+
|
152 |
+
if os.path.abspath(
|
153 |
+
self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(
|
154 |
+
self.vocab_file):
|
155 |
+
copyfile(self.vocab_file, out_vocab_file)
|
156 |
+
elif not os.path.isfile(self.vocab_file):
|
157 |
+
with open(out_vocab_file, "wb") as fi:
|
158 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
159 |
+
fi.write(content_spiece_model)
|
160 |
+
|
161 |
+
return (out_vocab_file, )
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": "<|endoftext|>",
|
3 |
+
"pad_token": "<|pad|>",
|
4 |
+
"unk_token": "<|unk|>"
|
5 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e1ba8b7df0701723d2d901c7a42182fe77bf0045173f2cdb474ca6ea3eb1c02
|
3 |
+
size 707660
|
tokenizer_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"replit_lm_tokenizer.ReplitLMTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"bos_token": null,
|
9 |
+
"clean_up_tokenization_spaces": false,
|
10 |
+
"eos_token": "<|endoftext|>",
|
11 |
+
"model_max_length": 2048,
|
12 |
+
"pad_token": "<|pad|>",
|
13 |
+
"padding_side": "right",
|
14 |
+
"sep_token": null,
|
15 |
+
"sp_model_kwargs": {},
|
16 |
+
"tokenizer_class": "ReplitLMTokenizer",
|
17 |
+
"unk_token": "<|unk|>"
|
18 |
+
}
|