asahi417 commited on
Commit
170b9cd
·
1 Parent(s): c70e6f4

model update

Browse files
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: it
11
+ datasets:
12
+ - lmqg/qag_itquad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - questions and answers generation
16
+ widget:
17
+ - text: "Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
18
+ example_title: "Questions & Answers Generation Example 1"
19
+ model-index:
20
+ - name: lmqg/mbart-large-cc25-itquad-qag
21
+ results:
22
+ - task:
23
+ name: Text2text Generation
24
+ type: text2text-generation
25
+ dataset:
26
+ name: lmqg/qag_itquad
27
+ type: default
28
+ args: default
29
+ metrics:
30
+ - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
31
+ type: qa_aligned_f1_score_bertscore_question_answer_generation
32
+ value: 72.96
33
+ - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
34
+ type: qa_aligned_recall_bertscore_question_answer_generation
35
+ value: 71.83
36
+ - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
37
+ type: qa_aligned_precision_bertscore_question_answer_generation
38
+ value: 74.2
39
+ - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
40
+ type: qa_aligned_f1_score_moverscore_question_answer_generation
41
+ value: 51.25
42
+ - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
43
+ type: qa_aligned_recall_moverscore_question_answer_generation
44
+ value: 50.21
45
+ - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
46
+ type: qa_aligned_precision_moverscore_question_answer_generation
47
+ value: 52.44
48
+ ---
49
+
50
+ # Model Card of `lmqg/mbart-large-cc25-itquad-qag`
51
+ This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question & answer pair generation task on the [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
52
+
53
+
54
+ ### Overview
55
+ - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25)
56
+ - **Language:** it
57
+ - **Training data:** [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) (default)
58
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
59
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
60
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
61
+
62
+ ### Usage
63
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
64
+ ```python
65
+ from lmqg import TransformersQG
66
+
67
+ # initialize model
68
+ model = TransformersQG(language="it", model="lmqg/mbart-large-cc25-itquad-qag")
69
+
70
+ # model prediction
71
+ question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
72
+
73
+ ```
74
+
75
+ - With `transformers`
76
+ ```python
77
+ from transformers import pipeline
78
+
79
+ pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-itquad-qag")
80
+ output = pipe("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
81
+
82
+ ```
83
+
84
+ ## Evaluation
85
+
86
+
87
+ - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_itquad.default.json)
88
+
89
+ | | Score | Type | Dataset |
90
+ |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
91
+ | QAAlignedF1Score (BERTScore) | 72.96 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
92
+ | QAAlignedF1Score (MoverScore) | 51.25 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
93
+ | QAAlignedPrecision (BERTScore) | 74.2 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
94
+ | QAAlignedPrecision (MoverScore) | 52.44 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
95
+ | QAAlignedRecall (BERTScore) | 71.83 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
96
+ | QAAlignedRecall (MoverScore) | 50.21 | default | [lmqg/qag_itquad](https://huggingface.co/datasets/lmqg/qag_itquad) |
97
+
98
+
99
+
100
+ ## Training hyperparameters
101
+
102
+ The following hyperparameters were used during fine-tuning:
103
+ - dataset_path: lmqg/qag_itquad
104
+ - dataset_name: default
105
+ - input_types: ['paragraph']
106
+ - output_types: ['questions_answers']
107
+ - prefix_types: None
108
+ - model: facebook/mbart-large-cc25
109
+ - max_length: 512
110
+ - max_length_output: 256
111
+ - epoch: 14
112
+ - batch: 8
113
+ - lr: 0.0001
114
+ - fp16: False
115
+ - random_seed: 1
116
+ - gradient_accumulation_steps: 16
117
+ - label_smoothing: 0.15
118
+
119
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qag/raw/main/trainer_config.json).
120
+
121
+ ## Citation
122
+ ```
123
+ @inproceedings{ushio-etal-2022-generative,
124
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
125
+ author = "Ushio, Asahi and
126
+ Alva-Manchego, Fernando and
127
+ Camacho-Collados, Jose",
128
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
129
+ month = dec,
130
+ year = "2022",
131
+ address = "Abu Dhabi, U.A.E.",
132
+ publisher = "Association for Computational Linguistics",
133
+ }
134
+
135
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "lmqg_output/mbart-large-cc25-itquad-qag/best_model",
3
  "_num_labels": 3,
4
  "activation_dropout": 0.0,
5
  "activation_function": "gelu",
 
1
  {
2
+ "_name_or_path": "lmqg_output/mbart-large-cc25-itquad-qag/model_iovmpj/epoch_5",
3
  "_num_labels": 3,
4
  "activation_dropout": 0.0,
5
  "activation_function": "gelu",
eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_itquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.13542104061231505, "Bleu_2": 0.06463206722552836, "Bleu_3": 0.037527509456603755, "Bleu_4": 0.024149605383889588, "METEOR": 0.19637667004148632, "ROUGE_L": 0.1794824087703433, "BERTScore": 0.7184275808038225, "MoverScore": 0.5217052610229042, "QAAlignedF1Score (BERTScore)": 0.7276849783195997, "QAAlignedRecall (BERTScore)": 0.736117797855707, "QAAlignedPrecision (BERTScore)": 0.7199664947047292, "QAAlignedF1Score (MoverScore)": 0.5072712200324073, "QAAlignedRecall (MoverScore)": 0.513133939102146, "QAAlignedPrecision (MoverScore)": 0.5021306806188025}, "test": {"Bleu_1": 0.2028246379360438, "Bleu_2": 0.11573898832621304, "Bleu_3": 0.0720727821284893, "Bleu_4": 0.048660815663715204, "METEOR": 0.1550108751815631, "ROUGE_L": 0.19751677816796323, "BERTScore": 0.7635607211222831, "MoverScore": 0.5331782063975097, "QAAlignedF1Score (BERTScore)": 0.7296107903023021, "QAAlignedRecall (BERTScore)": 0.7183084581772343, "QAAlignedPrecision (BERTScore)": 0.7420292418872366, "QAAlignedF1Score (MoverScore)": 0.5125459244623932, "QAAlignedRecall (MoverScore)": 0.502108717608002, "QAAlignedPrecision (MoverScore)": 0.5243794013209974}}
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_itquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:324258296b9c83bde7c18b3d5f544ac7d3edd8dda1a7dbba85db077c9eafa081
3
- size 2444576505
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c64a4d21592f47da1d3ade5f555aec4110f8a229156713f406fe872d27e33e14
3
+ size 2444583801
tokenizer_config.json CHANGED
@@ -12,7 +12,7 @@
12
  "single_word": false
13
  },
14
  "model_max_length": 1024,
15
- "name_or_path": "lmqg_output/mbart-large-cc25-itquad-qag/best_model",
16
  "pad_token": "<pad>",
17
  "sep_token": "</s>",
18
  "special_tokens_map_file": null,
 
12
  "single_word": false
13
  },
14
  "model_max_length": 1024,
15
+ "name_or_path": "lmqg_output/mbart-large-cc25-itquad-qag/model_iovmpj/epoch_5",
16
  "pad_token": "<pad>",
17
  "sep_token": "</s>",
18
  "special_tokens_map_file": null,
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset_path": "lmqg/qag_itquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types": null, "model": "facebook/mbart-large-cc25", "max_length": 512, "max_length_output": 256, "epoch": 14, "batch": 8, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 16, "label_smoothing": 0.15}