File size: 2,900 Bytes
ad7cb5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: sentence-transformers/LaBSE
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: binary_persian_sentiment_analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# binary_persian_sentiment_analysis
This model is a fine-tuned version of [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5060
- Accuracy: 0.8805
- F1 Score: 0.8805
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:--------:|
| 0.5045 | 1.0 | 8359 | 0.5295 | 0.8816 | 0.8814 |
| 0.4211 | 2.0 | 16718 | 0.6029 | 0.8837 | 0.8837 |
| 0.3501 | 3.0 | 25077 | 0.5060 | 0.8805 | 0.8805 |
| 0.2541 | 4.0 | 33436 | 0.7740 | 0.8762 | 0.8762 |
| 0.2065 | 5.0 | 41795 | 0.8071 | 0.8746 | 0.8745 |
| 0.1915 | 6.0 | 50154 | 0.8341 | 0.8805 | 0.8805 |
| 0.137 | 7.0 | 58513 | 0.9235 | 0.8644 | 0.8644 |
| 0.0605 | 8.0 | 66872 | 0.9695 | 0.8584 | 0.8584 |
| 0.0405 | 9.0 | 75231 | 1.0090 | 0.8751 | 0.8751 |
| 0.0712 | 10.0 | 83590 | 1.0134 | 0.8767 | 0.8767 |
| 0.0295 | 11.0 | 91949 | 1.0266 | 0.8708 | 0.8709 |
| 0.0704 | 12.0 | 100308 | 0.9940 | 0.8767 | 0.8767 |
| 0.0233 | 13.0 | 108667 | 1.0747 | 0.8762 | 0.8762 |
| 0.0153 | 14.0 | 117026 | 1.0747 | 0.8741 | 0.8741 |
| 0.0245 | 15.0 | 125385 | 1.0027 | 0.8837 | 0.8837 |
| 0.0618 | 16.0 | 133744 | 0.9939 | 0.8778 | 0.8778 |
| 0.0087 | 17.0 | 142103 | 1.0448 | 0.8854 | 0.8853 |
| 0.0174 | 18.0 | 150462 | 1.0339 | 0.8837 | 0.8838 |
| 0.0185 | 19.0 | 158821 | 1.1171 | 0.8778 | 0.8778 |
| 0.0075 | 20.0 | 167180 | 1.1022 | 0.8827 | 0.8827 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|