File size: 2,900 Bytes
ad7cb5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: sentence-transformers/LaBSE
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: binary_persian_sentiment_analysis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# binary_persian_sentiment_analysis

This model is a fine-tuned version of [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5060
- Accuracy: 0.8805
- F1 Score: 0.8805

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy | F1 Score |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:--------:|
| 0.5045        | 1.0   | 8359   | 0.5295          | 0.8816   | 0.8814   |
| 0.4211        | 2.0   | 16718  | 0.6029          | 0.8837   | 0.8837   |
| 0.3501        | 3.0   | 25077  | 0.5060          | 0.8805   | 0.8805   |
| 0.2541        | 4.0   | 33436  | 0.7740          | 0.8762   | 0.8762   |
| 0.2065        | 5.0   | 41795  | 0.8071          | 0.8746   | 0.8745   |
| 0.1915        | 6.0   | 50154  | 0.8341          | 0.8805   | 0.8805   |
| 0.137         | 7.0   | 58513  | 0.9235          | 0.8644   | 0.8644   |
| 0.0605        | 8.0   | 66872  | 0.9695          | 0.8584   | 0.8584   |
| 0.0405        | 9.0   | 75231  | 1.0090          | 0.8751   | 0.8751   |
| 0.0712        | 10.0  | 83590  | 1.0134          | 0.8767   | 0.8767   |
| 0.0295        | 11.0  | 91949  | 1.0266          | 0.8708   | 0.8709   |
| 0.0704        | 12.0  | 100308 | 0.9940          | 0.8767   | 0.8767   |
| 0.0233        | 13.0  | 108667 | 1.0747          | 0.8762   | 0.8762   |
| 0.0153        | 14.0  | 117026 | 1.0747          | 0.8741   | 0.8741   |
| 0.0245        | 15.0  | 125385 | 1.0027          | 0.8837   | 0.8837   |
| 0.0618        | 16.0  | 133744 | 0.9939          | 0.8778   | 0.8778   |
| 0.0087        | 17.0  | 142103 | 1.0448          | 0.8854   | 0.8853   |
| 0.0174        | 18.0  | 150462 | 1.0339          | 0.8837   | 0.8838   |
| 0.0185        | 19.0  | 158821 | 1.1171          | 0.8778   | 0.8778   |
| 0.0075        | 20.0  | 167180 | 1.1022          | 0.8827   | 0.8827   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0