File size: 6,131 Bytes
34093da
 
 
 
 
90fb8b4
34093da
 
 
 
31ba759
34093da
ad7c6cc
 
34093da
31ba759
 
34093da
 
 
31ba759
 
34093da
31ba759
 
 
34093da
ad7c6cc
312f1a5
ad7c6cc
 
 
 
31ba759
34093da
 
 
31ba759
 
 
cf92ada
ba771dc
 
98a95c4
cf92ada
ba771dc
cf92ada
 
dc4c29d
cf92ada
 
 
 
31ba759
 
 
 
 
8bbd2bd
31ba759
8bbd2bd
 
 
31ba759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc2703
 
31ba759
5cc2703
31ba759
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: image-text-to-text
tags:
- multimodal
- aria
---
<!-- <p align="center">
  <br>Aria</br>
</p>  -->


# Aria Model Card
<!-- 
- Aria is the **first open multimodal native MoE** model, capable of seamlessly handling various input modalities within a MoE architecture.
- Aria performs **on par with GPT-4o mini and Gemini 1.5 Flash** across a range of multimodal tasks while maintaining strong performance on **text**-only tasks.
- Compared to similar or even larger models, Aria boasts **faster speeds** and **lower costs**. This high efficiency stems from its ability to activate only 3.9B parameters during inference – the **fewest** among models with comparable performance.
 -->
## Key features

- **SoTA Multimodal Native Performance**: Aria achieves strong performance on a wide range of multimodal, language, and coding tasks. It is superior in video and document understanding.   
- **Lightweight and Fast**: Aria is a mixture-of-expert model with 3.9B activated parameters per token. It efficently encodes visual input of variable sizes and aspect ratios.  
- **Long Multimodal Context Window**: Aria supports multimodal input of up to 64K tokens. It can caption a 256-frame video in 10 seconds.

<p align="center">
🔗 <a href="https://rhymes.ai/" target="_blank"> Try Aria!</a> · 📖 <a href="https://www.rhymes.ai/blog-details/aria-first-open-multimodal-native-moe-model" target="_blank">Blog</a> · 📌 <a href="https://arxiv.org/pdf/2410.05993" target="_blank">Paper</a> 
 · ⭐<a href="https://github.com/rhymes-ai/Aria" target="_blank">GitHub</a>
</p> 


<!-- # Model Info

| Model  | Download  | Parameter | Context Length |
| :---- | :------- | :------------ | :------ |
| Aria | < HF link - TBD> | • Activation: 3.9B (3.5B MoE + 0.4B Visual Encoder) <br> • Total: 25.3B | 64K           | -->

## Benchmark
| Category                            | Benchmark         |  Aria  | Pixtral 12B | Llama3.2 11B | GPT-4o mini | Gemini-1.5 Flash |
|:-------------------------------------|:-------------------|:--------:|:-------------:|:--------------:|:-------------:|:------------------:|
| **Knowledge (Multimodal)**          | MMMU              |  54.9  |    52.5     |    50.7      |    59.4     |      56.1        |
| **Math (Multimodal)**               | MathVista         |  66.1  |    58.0     |    51.5      |      -      |      58.4        |
| **Document**                        | DocQA             |  92.6  |    90.7     |    84.4      |      -      |      89.9        |
| **Chart**                           | ChartQA           |  86.4  |    81.8     |    83.4      |      -      |      85.4        |
| **Scene Text**                      | TextVQA           |  81.1  |      -      |      -       |      -      |      78.7        |
| **General Visual QA**               | MMBench-1.1       |  80.3  |      -      |      -       |    76.0     |        -         |
| **Video Understanding**             | LongVideoBench    |  65.3  |    47.4     |    45.7      |    58.8     |      62.4        |
| **Knowledge (Language)**            | MMLU (5-shot)     |  73.3  |    69.2     |    69.4      |      -      |      78.9        |
| **Math (Language)**                 | MATH              |  50.8  |    48.1     |    51.9      |    70.2     |        -         |
| **Reasoning (Language)**            | ARC Challenge     |  91.0  |      -      |    83.4      |    96.4     |        -         |
| **Coding**                          | HumanEval         |  73.2  |    72.0     |    72.6      |    87.2     |      74.3        |


## Quick Start
### Installation
```
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
pip install flash-attn --no-build-isolation

# For better performance, you can install grouped-gemm, which may take 3-5 minutes to install
pip install grouped_gemm==0.1.6
```

### Inference

Aria has 25.3B total parameters, it can be loaded in one A100 (80GB) GPU with bfloat16 precision.

Here is a code snippet to show you how to use Aria.

```python
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor

model_id_or_path = "rhymes-ai/Aria"

model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)

processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)

image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"

image = Image.open(requests.get(image_path, stream=True).raw)

messages = [
    {
        "role": "user",
        "content": [
            {"text": None, "type": "image"},
            {"text": "what is the image?", "type": "text"},
        ],
    }
]

text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}

with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
    output = model.generate(
        **inputs,
        max_new_tokens=500,
        stop_strings=["<|im_end|>"],
        tokenizer=processor.tokenizer,
        do_sample=True,
        temperature=0.9,
    )
    output_ids = output[0][inputs["input_ids"].shape[1]:]
    result = processor.decode(output_ids, skip_special_tokens=True)

print(result)
```

### Advanced Inference and Fine-tuning
We provide a [codebase](https://github.com/rhymes-ai/Aria) for more advanced usage of Aria,
including vllm inference, cookbooks, and fine-tuning on custom datasets.



## Citation
If you find our work helpful, please consider citing.
```
@article{aria,
  title={Aria: An Open Multimodal Native Mixture-of-Experts Model}, 
  author={Dongxu Li and Yudong Liu and Haoning Wu and Yue Wang and Zhiqi Shen and Bowen Qu and Xinyao Niu and Guoyin Wang and Bei Chen and Junnan Li},
  year={2024},
  journal={arXiv preprint arXiv:2410.05993},
}
```