rievil commited on
Commit
4f6a196
·
verified ·
1 Parent(s): f8c9cdf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -98
README.md CHANGED
@@ -38,115 +38,25 @@ The dataset was created under the research project of Grant Agency of Czech Repu
38
  ### Training Procedure
39
 
40
  The training was done using Pytorch library, where CrossEntropyLoss() together with AdamW optimizer function. The training was done
41
- #### Preprocessing [optional]
42
 
43
- [More Information Needed]
44
 
45
-
46
- #### Training Hyperparameters
47
-
48
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
49
-
50
- #### Speeds, Sizes, Times [optional]
51
-
52
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
53
-
54
- [More Information Needed]
55
-
56
- ## Evaluation
57
-
58
- <!-- This section describes the evaluation protocols and provides the results. -->
59
-
60
- ### Testing Data, Factors & Metrics
61
-
62
- #### Testing Data
63
-
64
- <!-- This should link to a Dataset Card if possible. -->
65
-
66
- [More Information Needed]
67
-
68
- #### Factors
69
-
70
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
71
-
72
- [More Information Needed]
73
-
74
- #### Metrics
75
-
76
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
77
-
78
- [More Information Needed]
79
-
80
- ### Results
81
-
82
- [More Information Needed]
83
-
84
- #### Summary
85
-
86
-
87
-
88
- ## Model Examination [optional]
89
-
90
- <!-- Relevant interpretability work for the model goes here -->
91
-
92
- [More Information Needed]
93
-
94
- ## Environmental Impact
95
-
96
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
97
-
98
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
99
-
100
- - **Hardware Type:** [More Information Needed]
101
- - **Hours used:** [More Information Needed]
102
- - **Cloud Provider:** [More Information Needed]
103
- - **Compute Region:** [More Information Needed]
104
- - **Carbon Emitted:** [More Information Needed]
105
-
106
- ## Technical Specifications [optional]
107
-
108
- ### Model Architecture and Objective
109
-
110
- [More Information Needed]
111
-
112
- ### Compute Infrastructure
113
-
114
- [More Information Needed]
115
 
116
  #### Hardware
117
 
118
- [More Information Needed]
119
 
120
  #### Software
121
 
122
- [More Information Needed]
123
-
124
- ## Citation [optional]
125
-
126
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
127
-
128
- **BibTeX:**
129
-
130
- [More Information Needed]
131
-
132
- **APA:**
133
-
134
- [More Information Needed]
135
-
136
- ## Glossary [optional]
137
-
138
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
139
-
140
- [More Information Needed]
141
-
142
- ## More Information [optional]
143
-
144
- [More Information Needed]
145
 
146
  ## Model Card Authors [optional]
147
 
148
- [More Information Needed]
 
 
149
 
150
  ## Model Card Contact
151
 
152
- [More Information Needed]
 
38
  ### Training Procedure
39
 
40
  The training was done using Pytorch library, where CrossEntropyLoss() together with AdamW optimizer function. The training was done
 
41
 
42
+ ### Results & Metrics
43
 
44
+ The overall accuracy of training for all classes reaches 99%, the mean intersection of union reaches 70%.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  #### Hardware
47
 
48
+ The training was done using NVIDIA Quadro P4000.
49
 
50
  #### Software
51
 
52
+ The models were trained using Pytorch in Python, the segmentation and dataset preparation was done using LabKit plugin in software FIJI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  ## Model Card Authors [optional]
55
 
56
+ Richard Dvorak, Brno University of Technology, Faculty of Civil Engineering, Institute of building testing
57
+ Vlastimil Bilek, Brno University of Technology, Faculty of Chemistry, Institute of material chemistry
58
+ Barbara Kucharczyková, Brno University of Technology, Faculty of Civil Engineering, Institute of building testing
59
 
60
  ## Model Card Contact
61
 
62
+ The author of the dataset is Richard Dvorak Ph.D., [email protected], tel.: +420 777 678 613, employee of Brno University Of Technology of the Faculty of Civil Engineering, institute of building testing.