File size: 5,325 Bytes
b7cbfb0 091f591 b7cbfb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama3
datasets:
- CohereForAI/aya_dataset
- kunishou/databricks-dolly-15k-ja
- kunishou/HelpSteer-35k-ja
- kunishou/HelpSteer2-20k-ja
- kunishou/hh-rlhf-49k-ja
- kunishou/oasst1-chat-44k-ja
- kunishou/oasst2-chat-68k-ja
- meta-math/MetaMathQA
- OpenAssistant/oasst1
- OpenAssistant/oasst2
- sahil2801/CodeAlpaca-20k
language:
- ja
- en
tags:
- llama
- llama-3
- gptq
inference: false
base_model: rinna/llama-3-youko-8b-instruct
base_model_relation: quantized
---
# `Llama 3 Youko 8B Instruct GPTQ (rinna/llama-3-youko-8b-instruct-gptq)`
![rinna-icon](./rinna.png)
# Overview
rinna/llama-3-youko-8b-instruct-gptq is the quantized model for [rinna/llama-3-youko-8b-instruct](https://huggingface.co/rinna/llama-3-youko-8b-instruct) using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ). The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.
| Size | Continual Pre-Training | Instruction-Tuning |
| :- | :- | :- |
| 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) |
| 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) |
* **Training: Built with Meta Llama 3**
See [rinna/llama-3-youko-8b-instruct](https://huggingface.co/rinna/llama-3-youko-8b-instruct) for details about model architecture and data.
* **Contributors**
- [Toshiaki Wakatsuki](https://huggingface.co/t-w)
- [Xinqi Chen](https://huggingface.co/Keely0419)
- [Koh Mitsuda](https://huggingface.co/mitsu-koh)
- [Kei Sawada](https://huggingface.co/keisawada)
---
# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
We found this instruction-tuned model tends to generate repeated text more often than its base counterpart, and thus we set repetition_penalty=1.1 for better generation performance. The same repetition penalty was applied to the instruction-tuned model in the aforementioned evaluation experiments.
~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "rinna/llama-3-youko-8b-instruct-gptq"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
)
messages = [
{"role": "system", "content": "あなたは誠実で優秀なアシスタントです。どうか、簡潔かつ正直に答えてください。"},
{"role": "user", "content": "西田幾多郎とはどんな人物ですか?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
repetition_penalty=1.1,
)
response = outputs[0][input_ids.shape[-1]:]
response = tokenizer.decode(response, skip_special_tokens=True)
print(response)
~~~~
---
# Tokenization
The model uses the original [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) tokenizer.
---
# How to cite
```bibtex
@misc{rinna-llama-3-youko-8b-instruct-gptq,
title = {rinna/llama-3-youko-8b-instruct-gptq},
author = {Wakatsuki, Toshiaki and Chen, Xinqi and Mitsuda, Koh and Sawada, Kei},
url = {https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# References
```bibtex
@article{llama3modelcard,
title = {Llama 3 Model Card},
author = {AI@Meta},
year = {2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
@article{frantar2022gptq,
title = {{GPTQ}: Accurate Post-training Compression for Generative Pretrained Transformers},
author = {Frantar, Elias and Ashkboos, Saleh and Hoefler, Torsten and Alistarh, Dan},
year = {2022},
url = {https://arxiv.org/abs/2210.17323}
}
```
---
# License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/) |