risedev commited on
Commit
5448fc1
·
verified ·
1 Parent(s): cf606c9

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - vision
5
+ - language
6
+ - fashion
7
+ - ecommerce
8
+ library_name: transformers
9
+ language:
10
+ - en
11
+ widget:
12
+ - src: https://cdn-images.farfetch-contents.com/19/76/05/56/19760556_44221665_1000.jpg
13
+ candidate_labels: black shoe, red shoe, a cat
14
+ example_title: Black Shoe
15
+ ---
16
+
17
+ [![Youtube Video](https://img.shields.io/badge/youtube-video-red)](https://www.youtube.com/watch?v=uqRSc-KSA1Y) [![HuggingFace Model](https://img.shields.io/badge/HF%20Model-Weights-yellow)](https://huggingface.co/patrickjohncyh/fashion-clip) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Z1hAxBnWjF76bEi9KQ6CMBBEmI_FVDrW?usp=sharing) [![Medium Blog Post](https://raw.githubusercontent.com/aleen42/badges/master/src/medium.svg)](https://towardsdatascience.com/teaching-clip-some-fashion-3005ac3fdcc3) [![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://huggingface.co/spaces/vinid/fashion-clip-app)
18
+
19
+ # Model Card: Fashion CLIP
20
+
21
+ Disclaimer: The model card adapts the model card from [here](https://huggingface.co/openai/clip-vit-base-patch32).
22
+
23
+ ## Model Details
24
+
25
+ UPDATE (10/03/23): We have updated the model! We found that [laion/CLIP-ViT-B-32-laion2B-s34B-b79K](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K) checkpoint (thanks [Bin](https://www.linkedin.com/in/bin-duan-56205310/)!) worked better than original OpenAI CLIP on Fashion. We thus fine-tune a newer (and better!) version of FashionCLIP (henceforth FashionCLIP 2.0), while keeping the architecture the same. We postulate that the perofrmance gains afforded by `laion/CLIP-ViT-B-32-laion2B-s34B-b79K` are due to the increased training data (5x OpenAI CLIP data). Our [thesis](https://www.nature.com/articles/s41598-022-23052-9), however, remains the same -- fine-tuning `laion/CLIP` on our fashion dataset improved zero-shot perofrmance across our benchmarks. See the below table comparing weighted macro F1 score across models.
26
+
27
+
28
+ | Model | FMNIST | KAGL | DEEP |
29
+ | ------------- | ------------- | ------------- | ------------- |
30
+ | OpenAI CLIP | 0.66 | 0.63 | 0.45 |
31
+ | FashionCLIP | 0.74 | 0.67 | 0.48 |
32
+ | Laion CLIP | 0.78 | 0.71 | 0.58 |
33
+ | FashionCLIP 2.0 | __0.83__ | __0.73__ | __0.62__ |
34
+
35
+ ---
36
+
37
+ FashionCLIP is a CLIP-based model developed to produce general product representations for fashion concepts. Leveraging the pre-trained checkpoint (ViT-B/32) released by [OpenAI](https://github.com/openai/CLIP), we train FashionCLIP on a large, high-quality novel fashion dataset to study whether domain specific fine-tuning of CLIP-like models is sufficient to produce product representations that are zero-shot transferable to entirely new datasets and tasks. FashionCLIP was not developed for model deplyoment - to do so, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
38
+
39
+ ### Model Date
40
+
41
+ March 2023
42
+
43
+ ### Model Type
44
+
45
+ The model uses a ViT-B/32 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained, starting from a pre-trained checkpoint, to maximize the similarity of (image, text) pairs via a contrastive loss on a fashion dataset containing 800K products.
46
+
47
+
48
+ ### Documents
49
+
50
+ - [FashionCLIP Github Repo](https://github.com/patrickjohncyh/fashion-clip)
51
+ - [FashionCLIP Paper](https://www.nature.com/articles/s41598-022-23052-9)
52
+
53
+
54
+ ## Data
55
+
56
+ The model was trained on (image, text) pairs obtained from the Farfecth dataset[^1 Awaiting official release.], an English dataset comprising over 800K fashion products, with more than 3K brands across dozens of object types. The image used for encoding is the standard product image, which is a picture of the item over a white background, with no humans. The text used is a concatenation of the _highlight_ (e.g., “stripes”, “long sleeves”, “Armani”) and _short description_ (“80s styled t-shirt”)) available in the Farfetch dataset.
57
+
58
+
59
+
60
+ ## Limitations, Bias and Fiarness
61
+
62
+ We acknowledge certain limitations of FashionCLIP and expect that it inherits certain limitations and biases present in the original CLIP model. We do not expect our fine-tuning to significantly augment these limitations: we acknowledge that the fashion data we use makes explicit assumptions about the notion of gender as in "blue shoes for a woman" that inevitably associate aspects of clothing with specific people.
63
+
64
+ Our investigations also suggest that the data used introduces certain limitations in FashionCLIP. From the textual modality, given that most captions derived from the Farfetch dataset are long, we observe that FashionCLIP may be more performant in longer queries than shorter ones. From the image modality, FashionCLIP is also biased towards standard product images (centered, white background).
65
+
66
+ Model selection, i.e. selecting an appropariate stopping critera during fine-tuning, remains an open challenge. We observed that using loss on an in-domain (i.e. same distribution as test) validation dataset is a poor selection critera when out-of-domain generalization (i.e. across different datasets) is desired, even when the dataset used is relatively diverse and large.
67
+
68
+
69
+ ## Citation
70
+ ```
71
+ @Article{Chia2022,
72
+ title="Contrastive language and vision learning of general fashion concepts",
73
+ author="Chia, Patrick John
74
+ and Attanasio, Giuseppe
75
+ and Bianchi, Federico
76
+ and Terragni, Silvia
77
+ and Magalh{\~a}es, Ana Rita
78
+ and Goncalves, Diogo
79
+ and Greco, Ciro
80
+ and Tagliabue, Jacopo",
81
+ journal="Scientific Reports",
82
+ year="2022",
83
+ month="Nov",
84
+ day="08",
85
+ volume="12",
86
+ number="1",
87
+ abstract="The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from general and transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model adapted for the fashion industry. We demonstrate the effectiveness of the representations learned by FashionCLIP with extensive tests across a variety of tasks, datasets and generalization probes. We argue that adaptations of large pre-trained models such as CLIP offer new perspectives in terms of scalability and sustainability for certain types of players in the industry. Finally, we detail the costs and environmental impact of training, and release the model weights and code as open source contribution to the community.",
88
+ issn="2045-2322",
89
+ doi="10.1038/s41598-022-23052-9",
90
+ url="https://doi.org/10.1038/s41598-022-23052-9"
91
+ }
92
+ ```
config.json ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "CLIPModel"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "logit_scale_init_value": 2.6592,
8
+ "model_type": "clip",
9
+ "projection_dim": 512,
10
+ "text_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_dropout": 0.0,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": 0,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "dropout": 0.0,
24
+ "early_stopping": false,
25
+ "encoder_no_repeat_ngram_size": 0,
26
+ "eos_token_id": 2,
27
+ "exponential_decay_length_penalty": null,
28
+ "finetuning_task": null,
29
+ "forced_bos_token_id": null,
30
+ "forced_eos_token_id": null,
31
+ "hidden_act": "quick_gelu",
32
+ "hidden_size": 512,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_factor": 1.0,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 2048,
40
+ "is_decoder": false,
41
+ "is_encoder_decoder": false,
42
+ "label2id": {
43
+ "LABEL_0": 0,
44
+ "LABEL_1": 1
45
+ },
46
+ "layer_norm_eps": 1e-05,
47
+ "length_penalty": 1.0,
48
+ "max_length": 20,
49
+ "max_position_embeddings": 77,
50
+ "min_length": 0,
51
+ "model_type": "clip_text_model",
52
+ "no_repeat_ngram_size": 0,
53
+ "num_attention_heads": 8,
54
+ "num_beam_groups": 1,
55
+ "num_beams": 1,
56
+ "num_hidden_layers": 12,
57
+ "num_return_sequences": 1,
58
+ "output_attentions": false,
59
+ "output_hidden_states": false,
60
+ "output_scores": false,
61
+ "pad_token_id": 1,
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "projection_dim": 512,
65
+ "pruned_heads": {},
66
+ "remove_invalid_values": false,
67
+ "repetition_penalty": 1.0,
68
+ "return_dict": true,
69
+ "return_dict_in_generate": false,
70
+ "sep_token_id": null,
71
+ "suppress_tokens": null,
72
+ "task_specific_params": null,
73
+ "temperature": 1.0,
74
+ "tf_legacy_loss": false,
75
+ "tie_encoder_decoder": false,
76
+ "tie_word_embeddings": true,
77
+ "tokenizer_class": null,
78
+ "top_k": 50,
79
+ "top_p": 1.0,
80
+ "torch_dtype": null,
81
+ "torchscript": false,
82
+ "transformers_version": "4.26.1",
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false,
85
+ "vocab_size": 49408
86
+ },
87
+ "torch_dtype": "float32",
88
+ "transformers_version": null,
89
+ "vision_config": {
90
+ "_name_or_path": "",
91
+ "add_cross_attention": false,
92
+ "architectures": null,
93
+ "attention_dropout": 0.0,
94
+ "bad_words_ids": null,
95
+ "begin_suppress_tokens": null,
96
+ "bos_token_id": null,
97
+ "chunk_size_feed_forward": 0,
98
+ "cross_attention_hidden_size": null,
99
+ "decoder_start_token_id": null,
100
+ "diversity_penalty": 0.0,
101
+ "do_sample": false,
102
+ "dropout": 0.0,
103
+ "early_stopping": false,
104
+ "encoder_no_repeat_ngram_size": 0,
105
+ "eos_token_id": null,
106
+ "exponential_decay_length_penalty": null,
107
+ "finetuning_task": null,
108
+ "forced_bos_token_id": null,
109
+ "forced_eos_token_id": null,
110
+ "hidden_act": "quick_gelu",
111
+ "hidden_size": 768,
112
+ "id2label": {
113
+ "0": "LABEL_0",
114
+ "1": "LABEL_1"
115
+ },
116
+ "image_size": 224,
117
+ "initializer_factor": 1.0,
118
+ "initializer_range": 0.02,
119
+ "intermediate_size": 3072,
120
+ "is_decoder": false,
121
+ "is_encoder_decoder": false,
122
+ "label2id": {
123
+ "LABEL_0": 0,
124
+ "LABEL_1": 1
125
+ },
126
+ "layer_norm_eps": 1e-05,
127
+ "length_penalty": 1.0,
128
+ "max_length": 20,
129
+ "min_length": 0,
130
+ "model_type": "clip_vision_model",
131
+ "no_repeat_ngram_size": 0,
132
+ "num_attention_heads": 12,
133
+ "num_beam_groups": 1,
134
+ "num_beams": 1,
135
+ "num_channels": 3,
136
+ "num_hidden_layers": 12,
137
+ "num_return_sequences": 1,
138
+ "output_attentions": false,
139
+ "output_hidden_states": false,
140
+ "output_scores": false,
141
+ "pad_token_id": null,
142
+ "patch_size": 32,
143
+ "prefix": null,
144
+ "problem_type": null,
145
+ "projection_dim": 512,
146
+ "pruned_heads": {},
147
+ "remove_invalid_values": false,
148
+ "repetition_penalty": 1.0,
149
+ "return_dict": true,
150
+ "return_dict_in_generate": false,
151
+ "sep_token_id": null,
152
+ "suppress_tokens": null,
153
+ "task_specific_params": null,
154
+ "temperature": 1.0,
155
+ "tf_legacy_loss": false,
156
+ "tie_encoder_decoder": false,
157
+ "tie_word_embeddings": true,
158
+ "tokenizer_class": null,
159
+ "top_k": 50,
160
+ "top_p": 1.0,
161
+ "torch_dtype": null,
162
+ "torchscript": false,
163
+ "transformers_version": "4.26.1",
164
+ "typical_p": 1.0,
165
+ "use_bfloat16": false
166
+ }
167
+ }
handler.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from optimum.onnxruntime import ORTModelForSequenceClassification
3
+ from transformers import pipeline, AutoTokenizer
4
+
5
+
6
+ class EndpointHandler():
7
+ def __init__(self, path=""):
8
+ # load the optimized model
9
+ model = ORTModelForSequenceClassification.from_pretrained(path)
10
+ tokenizer = AutoTokenizer.from_pretrained(path)
11
+ # create inference pipeline
12
+ self.pipeline = pipeline("zero-shot-image-classification", model=model, tokenizer=tokenizer)
13
+
14
+
15
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
16
+ """
17
+ Args:
18
+ data (:obj:):
19
+ includes the input data and the parameters for the inference.
20
+ Return:
21
+ A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
22
+ - "label": A string representing what the label/class is. There can be multiple labels.
23
+ - "score": A score between 0 and 1 describing how confident the model is for this label/class.
24
+ """
25
+ inputs = data.pop("inputs", data)
26
+ parameters = data.pop("parameters", None)
27
+
28
+ # pass inputs with all kwargs in data
29
+ if parameters is not None:
30
+ prediction = self.pipeline(inputs, **parameters)
31
+ else:
32
+ prediction = self.pipeline(inputs)
33
+ # postprocess the prediction
34
+ return prediction
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4977e3a54929eccf065ce449aeaf296f0e5cb6b28e8798c3c97d67cb2f6dafc9
3
+ size 605157890
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "resample": 3,
18
+ "size": 224
19
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5adfac18a5eda0d68c975b9ddebc219836ca0280b37a1d0dd4e44725193a10b8
3
+ size 605239073
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "./clip_ViT_B_32/"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff