robert1003
commited on
Commit
·
0c69fec
1
Parent(s):
e79df1d
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 175.84 +/- 84.48
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc85bec5940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc85bec59d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc85bec5a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc85bec5af0>", "_build": "<function ActorCriticPolicy._build at 0x7fc85bec5b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fc85bec5c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc85bec5ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc85bec5d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc85bec5dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc85bec5e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc85bec5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc85bec9630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652600271.196419, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGYvaG9tZS9yb2JlcnQxMDAzLy5weWVudi92ZXJzaW9ucy9kZWVwLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrp6L0UCI263h7jO1DzdbjlspK6T+yyOQAAgD8AAIA/AGxCPMNhQ7p7nQw61sBNNSo8yTpZ9x+5AACAPwAAgD8zEUW+OPK+u6jRsjs3JJY5E4MdPVzol7oAAIA/AACAPyb7wL1c40a6/bHjuit4FrbVwG06TLECOgAAgD8AAIA/mg0Nvvp/0T6o7Q6+kPVZvhyDxzuW0EG7AAAAAAAAAACAh9I+JvtqPzWB1T5WD5m+UvahPjYGyT0AAAAAAAAAAD1lXL50npy8ITo1OypmzjlN5BA+g8BQugAAgD8AAIA/ALbgvR+V0bm1coO5HOpnNsjDNbunVJw4AACAPwAAgD9mUeg9uF72ubRhu7slLng4r6gqu3ZOETcAAAAAAACAPzPMy71ca1W6Bb56udOqBjQON0y6G4+ROAAAgD8AAAAAgKWqvXGNE7lP/pQ7fiYXtj0t9ztvdhC1AAAAAAAAgD8Aiii+XF8JOW7tYblELz20z3ffuR9ZhTgAAIA/AACAP5p5VLrD+Sa6paegOt6mBrZE0rm4JUnwtAAAgD8AAIA/jZGxPY/OQbpaJdK6Zb1VNzi7K7og7uU5AACAPwAAgD8ARky+n++ruzChmjvrFdo48WQIPT/7vLkAAIA/AACAPzrjRr7D9Hs7ISNCOfu9jLZd5hu9xuJnuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY5rpXic5OcCUhpRSlIwBbJRNSAGMAXSUR0B+utr9ETg3dX2UKGgGaAloD0MI2xfQC3dMWUCUhpRSlGgVTegDaBZHQH6+XDJlrdp1fZQoaAZoCWgPQwhkeOxnsUQhQJSGlFKUaBVNRwFoFkdAfvgxVAAyVXV9lChoBmgJaA9DCIza/SrAu1lAlIaUUpRoFU3oA2gWR0B++hWBBiTddX2UKGgGaAloD0MI1SXjGMkMX0CUhpRSlGgVTegDaBZHQH8iAPNFBpp1fZQoaAZoCWgPQwgCnx9GiHtgQJSGlFKUaBVN6ANoFkdAfz1tKIznBHV9lChoBmgJaA9DCGu6nui641hAlIaUUpRoFU3oA2gWR0B/RTJA+pwTdX2UKGgGaAloD0MIlWHcDaIlLkCUhpRSlGgVTegDaBZHQH9kcpG4I8h1fZQoaAZoCWgPQwhAijpzj1hgQJSGlFKUaBVN6ANoFkdAgAKabnX/YXV9lChoBmgJaA9DCEwZOKClb2BAlIaUUpRoFU3oA2gWR0CAClkhA4XGdX2UKGgGaAloD0MIGavN/6sWXkCUhpRSlGgVTegDaBZHQIAPBVZLZjB1fZQoaAZoCWgPQwjog2Vs6BRlwJSGlFKUaBVNPAJoFkdAgA/gYpDu0HV9lChoBmgJaA9DCEeQSrGjuVhAlIaUUpRoFU3oA2gWR0CAGUSsbNr1dX2UKGgGaAloD0MIclKY9zgAXECUhpRSlGgVTegDaBZHQIAfaMm4RVZ1fZQoaAZoCWgPQwgCfo0kQW1cQJSGlFKUaBVN6ANoFkdAgCG8do3713V9lChoBmgJaA9DCNiACHHluEZAlIaUUpRoFU3oA2gWR0CAIgNsnAqNdX2UKGgGaAloD0MIw3+6gQJPV0CUhpRSlGgVTegDaBZHQIAjx7w8W9F1fZQoaAZoCWgPQwhBKsWOxgdKQJSGlFKUaBVN6ANoFkdAgCaisfaHsXV9lChoBmgJaA9DCAubAS7IzltAlIaUUpRoFU3oA2gWR0CAKKcebNKRdX2UKGgGaAloD0MIGqiMf58hQsCUhpRSlGgVTRYBaBZHQIAzNe6Zpi91fZQoaAZoCWgPQwhVhJuMKkBaQJSGlFKUaBVN6ANoFkdAgEUoiTt9hXV9lChoBmgJaA9DCCnrNxPTvlpAlIaUUpRoFU3oA2gWR0CAXG9XcQAddX2UKGgGaAloD0MI1H/W/HjWYUCUhpRSlGgVTegDaBZHQIBm+9tdiUh1fZQoaAZoCWgPQwgF+kSeJK9hQJSGlFKUaBVN6ANoFkdAgGs7yYoiLXV9lChoBmgJaA9DCIOI1LQLK2BAlIaUUpRoFU3oA2gWR0CAfi6XBxgidX2UKGgGaAloD0MIo5V7gVmXQMCUhpRSlGgVTR8BaBZHQICItn7Hhjx1fZQoaAZoCWgPQwhRacTMPpJVQJSGlFKUaBVN6ANoFkdAgMm6nBLwnnV9lChoBmgJaA9DCIDyd++oXV5AlIaUUpRoFU3oA2gWR0CA0YmReTmodX2UKGgGaAloD0MIi8Iuih6kX0CUhpRSlGgVTegDaBZHQIDV9mcvugJ1fZQoaAZoCWgPQwhP6PUn8atXQJSGlFKUaBVN6ANoFkdAgN+f47A+IXV9lChoBmgJaA9DCDAt6pPc2ltAlIaUUpRoFU3oA2gWR0CA5WXsPatcdX2UKGgGaAloD0MIJO8cytAEZECUhpRSlGgVTegDaBZHQIDnk8eS0Sh1fZQoaAZoCWgPQwgjn1c89eRaQJSGlFKUaBVN6ANoFkdAgOfbB42S+3V9lChoBmgJaA9DCEWb49wmZFdAlIaUUpRoFU3oA2gWR0CA6aVB2OhkdX2UKGgGaAloD0MIfCjRkseHNECUhpRSlGgVTTUBaBZHQIDrkUfxMFl1fZQoaAZoCWgPQwgGvTeGACtjQJSGlFKUaBVN6ANoFkdAgOxubZvkzXV9lChoBmgJaA9DCLhWe9gLYVVAlIaUUpRoFU3oA2gWR0CA7iL7XQMQdX2UKGgGaAloD0MIWaZfIt5rYECUhpRSlGgVTegDaBZHQID35Kvmozh1fZQoaAZoCWgPQwgZjBGJQlVZQJSGlFKUaBVN6ANoFkdAgQj1sk6cRXV9lChoBmgJaA9DCAoQBTOmvVZAlIaUUpRoFU3oA2gWR0CBLPD7ZWaMdX2UKGgGaAloD0MIlx5N9eSUY0CUhpRSlGgVTegDaBZHQIExU74i5d51fZQoaAZoCWgPQwh9lufB3T5YQJSGlFKUaBVN6ANoFkdAgUaGGVRk3HV9lChoBmgJaA9DCDARb51/+15AlIaUUpRoFU3oA2gWR0CBXIsIVuaXdX2UKGgGaAloD0MIIhyz7Em+WkCUhpRSlGgVTegDaBZHQIGZpiXpnpV1fZQoaAZoCWgPQwjMCkW6n85hQJSGlFKUaBVN6ANoFkdAgZ7HdO6/ZnV9lChoBmgJaA9DCOuoaoKoNGJAlIaUUpRoFU3oA2gWR0CBroGKyfL+dX2UKGgGaAloD0MIWkdVE8TOYECUhpRSlGgVTegDaBZHQIG1Lrs0HhV1fZQoaAZoCWgPQwh/h6JAn99WQJSGlFKUaBVN6ANoFkdAgbfCHymQ83V9lChoBmgJaA9DCJ+tg4M9A2BAlIaUUpRoFU3oA2gWR0CBuA8s+V1PdX2UKGgGaAloD0MIEVMiiV5bX0CUhpRSlGgVTegDaBZHQIG6FBnjABV1fZQoaAZoCWgPQwhGlsyxvMJZQJSGlFKUaBVN6ANoFkdAgbxFEiMYM3V9lChoBmgJaA9DCAyyZfm6FGJAlIaUUpRoFU3oA2gWR0CBvTKJVKf4dX2UKGgGaAloD0MI+FCiJY/qXECUhpRSlGgVTegDaBZHQIG/Cnm7rcF1fZQoaAZoCWgPQwhmoZ3TrLBpQJSGlFKUaBVNSgJoFkdAgcInxJ/XoXV9lChoBmgJaA9DCBhbCHJQW19AlIaUUpRoFU3oA2gWR0CBxXdPci4bdX2UKGgGaAloD0MILuI7MesVHUCUhpRSlGgVTSEBaBZHQIHF3ljmSyN1fZQoaAZoCWgPQwhVLlT+NWhgQJSGlFKUaBVN6ANoFkdAgdfmVAzHj3V9lChoBmgJaA9DCOHOhZFelk3AlIaUUpRoFU0zAWgWR0CB2Q8V58jSdX2UKGgGaAloD0MIOwDirl4BNcCUhpRSlGgVTUMBaBZHQIHbMwpON5t1fZQoaAZoCWgPQwhcxk0NNL9lQJSGlFKUaBVN5QFoFkdAgfnSNXHR1HV9lChoBmgJaA9DCMjNcAM+ulxAlIaUUpRoFU3oA2gWR0CB/UK64Ds/dX2UKGgGaAloD0MIeeV620x3XECUhpRSlGgVTegDaBZHQIIPBBE8aGZ1fZQoaAZoCWgPQwigGcQHduhQQJSGlFKUaBVN6ANoFkdAgiTwumJm/XV9lChoBmgJaA9DCNAPI4RHEWJAlIaUUpRoFU3oA2gWR0CCKWKdhAnldX2UKGgGaAloD0MI7fFCOjymVUCUhpRSlGgVTegDaBZHQIJ06H0se4l1fZQoaAZoCWgPQwgTueAM/i1gQJSGlFKUaBVN6ANoFkdAgnwtuUD+znV9lChoBmgJaA9DCAjovpzZfkLAlIaUUpRoFUvJaBZHQIJ9/P/rB0p1fZQoaAZoCWgPQwha1v1jIXlUQJSGlFKUaBVN6ANoFkdAgoF0FSsKcHV9lChoBmgJaA9DCJj4o6gzbldAlIaUUpRoFU3oA2gWR0CChUD7IkqudX2UKGgGaAloD0MIB13CobdEXkCUhpRSlGgVTegDaBZHQIKHtlf7aZh1fZQoaAZoCWgPQwggzy7festgQJSGlFKUaBVN6ANoFkdAgovcGkep43V9lChoBmgJaA9DCCBFnbmHqFNAlIaUUpRoFU3oA2gWR0CCkAZw4sErdX2UKGgGaAloD0MIjDBFuTQuWECUhpRSlGgVTegDaBZHQIKQi4x1xKh1fZQoaAZoCWgPQwjnqKPjagxMQJSGlFKUaBVNEgFoFkdAgqBhSUC7snV9lChoBmgJaA9DCJEMObae5lxAlIaUUpRoFU3oA2gWR0CCpWtDD0lJdX2UKGgGaAloD0MIfgIoRpZMYUCUhpRSlGgVTegDaBZHQIKml1bJOnF1fZQoaAZoCWgPQwg9tmXAWf9hQJSGlFKUaBVN6ANoFkdAgqiVoHs1K3V9lChoBmgJaA9DCLqilBCsigfAlIaUUpRoFU0TAWgWR0CCssX/HYHxdX2UKGgGaAloD0MIMbd7uU8kZECUhpRSlGgVTegDaBZHQILDyKWLP2R1fZQoaAZoCWgPQwiWe4FZoXNUQJSGlFKUaBVN6ANoFkdAgsbODSPU8XV9lChoBmgJaA9DCOz6BbthUGJAlIaUUpRoFU3oA2gWR0CC2yDAaef7dX2UKGgGaAloD0MIswsG11zeYECUhpRSlGgVTegDaBZHQILw2kpI+W51fZQoaAZoCWgPQwgzFk1nJ3BTQJSGlFKUaBVN6ANoFkdAgz5Htv4ub3V9lChoBmgJaA9DCLA8SE+R42JAlIaUUpRoFU3oA2gWR0CDRyXyAhB7dX2UKGgGaAloD0MIbVSnA1leVECUhpRSlGgVTegDaBZHQINKj9jwx351fZQoaAZoCWgPQwhUc7nBULpZQJSGlFKUaBVN6ANoFkdAg05U5U96knV9lChoBmgJaA9DCJbQXRJnUGNAlIaUUpRoFU3oA2gWR0CDUNzWf9P2dX2UKGgGaAloD0MIh4cwfprFY0CUhpRSlGgVTegDaBZHQINVJfx+a0B1fZQoaAZoCWgPQwgzh6QWSlVmQJSGlFKUaBVN6ANoFkdAg1o6mGdqcnV9lChoBmgJaA9DCL9DUaDPL2FAlIaUUpRoFU3oA2gWR0CDa10lJHy3dX2UKGgGaAloD0MIZ/FiYYj8SMCUhpRSlGgVTScBaBZHQINveeDnNgV1fZQoaAZoCWgPQwixFwrYjlJiQJSGlFKUaBVN6ANoFkdAg3BnbZezEHV9lChoBmgJaA9DCI6xE16CnlxAlIaUUpRoFU3oA2gWR0CDcX1Iy0rtdX2UKGgGaAloD0MIB5s6jwpkYkCUhpRSlGgVTegDaBZHQINzY+UyHmB1fZQoaAZoCWgPQwi0k8FR8gItwJSGlFKUaBVNTQFoFkdAg3XzCUHIIXV9lChoBmgJaA9DCOIgIcqXuWNAlIaUUpRoFU3oA2gWR0CDfEsq8UVSdX2UKGgGaAloD0MIB7e1heeuZECUhpRSlGgVTegDaBZHQIOLr9hqj8F1fZQoaAZoCWgPQwhywK4mT75jQJSGlFKUaBVN6ANoFkdAg46B24d6s3V9lChoBmgJaA9DCJo/prXppGJAlIaUUpRoFU3oA2gWR0CDnfT6SDAadX2UKGgGaAloD0MItDnObUKQYkCUhpRSlGgVTegDaBZHQIO1RB1LamJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGYvaG9tZS9yb2JlcnQxMDAzLy5weWVudi92ZXJzaW9ucy9kZWVwLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.29 #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022", "Python": "3.8.11", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a097838a41627063f20d3d2ea175f08f9370e2b2d650732e486328c8819dbec0
|
3 |
+
size 143966
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc85bec5940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc85bec59d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc85bec5a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc85bec5af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc85bec5b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc85bec5c10>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc85bec5ca0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc85bec5d30>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc85bec5dc0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc85bec5e50>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc85bec5ee0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc85bec9630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652600271.196419,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGYvaG9tZS9yb2JlcnQxMDAzLy5weWVudi92ZXJzaW9ucy9kZWVwLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrp6L0UCI263h7jO1DzdbjlspK6T+yyOQAAgD8AAIA/AGxCPMNhQ7p7nQw61sBNNSo8yTpZ9x+5AACAPwAAgD8zEUW+OPK+u6jRsjs3JJY5E4MdPVzol7oAAIA/AACAPyb7wL1c40a6/bHjuit4FrbVwG06TLECOgAAgD8AAIA/mg0Nvvp/0T6o7Q6+kPVZvhyDxzuW0EG7AAAAAAAAAACAh9I+JvtqPzWB1T5WD5m+UvahPjYGyT0AAAAAAAAAAD1lXL50npy8ITo1OypmzjlN5BA+g8BQugAAgD8AAIA/ALbgvR+V0bm1coO5HOpnNsjDNbunVJw4AACAPwAAgD9mUeg9uF72ubRhu7slLng4r6gqu3ZOETcAAAAAAACAPzPMy71ca1W6Bb56udOqBjQON0y6G4+ROAAAgD8AAAAAgKWqvXGNE7lP/pQ7fiYXtj0t9ztvdhC1AAAAAAAAgD8Aiii+XF8JOW7tYblELz20z3ffuR9ZhTgAAIA/AACAP5p5VLrD+Sa6paegOt6mBrZE0rm4JUnwtAAAgD8AAIA/jZGxPY/OQbpaJdK6Zb1VNzi7K7og7uU5AACAPwAAgD8ARky+n++ruzChmjvrFdo48WQIPT/7vLkAAIA/AACAPzrjRr7D9Hs7ISNCOfu9jLZd5hu9xuJnuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY5rpXic5OcCUhpRSlIwBbJRNSAGMAXSUR0B+utr9ETg3dX2UKGgGaAloD0MI2xfQC3dMWUCUhpRSlGgVTegDaBZHQH6+XDJlrdp1fZQoaAZoCWgPQwhkeOxnsUQhQJSGlFKUaBVNRwFoFkdAfvgxVAAyVXV9lChoBmgJaA9DCIza/SrAu1lAlIaUUpRoFU3oA2gWR0B++hWBBiTddX2UKGgGaAloD0MI1SXjGMkMX0CUhpRSlGgVTegDaBZHQH8iAPNFBpp1fZQoaAZoCWgPQwgCnx9GiHtgQJSGlFKUaBVN6ANoFkdAfz1tKIznBHV9lChoBmgJaA9DCGu6nui641hAlIaUUpRoFU3oA2gWR0B/RTJA+pwTdX2UKGgGaAloD0MIlWHcDaIlLkCUhpRSlGgVTegDaBZHQH9kcpG4I8h1fZQoaAZoCWgPQwhAijpzj1hgQJSGlFKUaBVN6ANoFkdAgAKabnX/YXV9lChoBmgJaA9DCEwZOKClb2BAlIaUUpRoFU3oA2gWR0CAClkhA4XGdX2UKGgGaAloD0MIGavN/6sWXkCUhpRSlGgVTegDaBZHQIAPBVZLZjB1fZQoaAZoCWgPQwjog2Vs6BRlwJSGlFKUaBVNPAJoFkdAgA/gYpDu0HV9lChoBmgJaA9DCEeQSrGjuVhAlIaUUpRoFU3oA2gWR0CAGUSsbNr1dX2UKGgGaAloD0MIclKY9zgAXECUhpRSlGgVTegDaBZHQIAfaMm4RVZ1fZQoaAZoCWgPQwgCfo0kQW1cQJSGlFKUaBVN6ANoFkdAgCG8do3713V9lChoBmgJaA9DCNiACHHluEZAlIaUUpRoFU3oA2gWR0CAIgNsnAqNdX2UKGgGaAloD0MIw3+6gQJPV0CUhpRSlGgVTegDaBZHQIAjx7w8W9F1fZQoaAZoCWgPQwhBKsWOxgdKQJSGlFKUaBVN6ANoFkdAgCaisfaHsXV9lChoBmgJaA9DCAubAS7IzltAlIaUUpRoFU3oA2gWR0CAKKcebNKRdX2UKGgGaAloD0MIGqiMf58hQsCUhpRSlGgVTRYBaBZHQIAzNe6Zpi91fZQoaAZoCWgPQwhVhJuMKkBaQJSGlFKUaBVN6ANoFkdAgEUoiTt9hXV9lChoBmgJaA9DCCnrNxPTvlpAlIaUUpRoFU3oA2gWR0CAXG9XcQAddX2UKGgGaAloD0MI1H/W/HjWYUCUhpRSlGgVTegDaBZHQIBm+9tdiUh1fZQoaAZoCWgPQwgF+kSeJK9hQJSGlFKUaBVN6ANoFkdAgGs7yYoiLXV9lChoBmgJaA9DCIOI1LQLK2BAlIaUUpRoFU3oA2gWR0CAfi6XBxgidX2UKGgGaAloD0MIo5V7gVmXQMCUhpRSlGgVTR8BaBZHQICItn7Hhjx1fZQoaAZoCWgPQwhRacTMPpJVQJSGlFKUaBVN6ANoFkdAgMm6nBLwnnV9lChoBmgJaA9DCIDyd++oXV5AlIaUUpRoFU3oA2gWR0CA0YmReTmodX2UKGgGaAloD0MIi8Iuih6kX0CUhpRSlGgVTegDaBZHQIDV9mcvugJ1fZQoaAZoCWgPQwhP6PUn8atXQJSGlFKUaBVN6ANoFkdAgN+f47A+IXV9lChoBmgJaA9DCDAt6pPc2ltAlIaUUpRoFU3oA2gWR0CA5WXsPatcdX2UKGgGaAloD0MIJO8cytAEZECUhpRSlGgVTegDaBZHQIDnk8eS0Sh1fZQoaAZoCWgPQwgjn1c89eRaQJSGlFKUaBVN6ANoFkdAgOfbB42S+3V9lChoBmgJaA9DCEWb49wmZFdAlIaUUpRoFU3oA2gWR0CA6aVB2OhkdX2UKGgGaAloD0MIfCjRkseHNECUhpRSlGgVTTUBaBZHQIDrkUfxMFl1fZQoaAZoCWgPQwgGvTeGACtjQJSGlFKUaBVN6ANoFkdAgOxubZvkzXV9lChoBmgJaA9DCLhWe9gLYVVAlIaUUpRoFU3oA2gWR0CA7iL7XQMQdX2UKGgGaAloD0MIWaZfIt5rYECUhpRSlGgVTegDaBZHQID35Kvmozh1fZQoaAZoCWgPQwgZjBGJQlVZQJSGlFKUaBVN6ANoFkdAgQj1sk6cRXV9lChoBmgJaA9DCAoQBTOmvVZAlIaUUpRoFU3oA2gWR0CBLPD7ZWaMdX2UKGgGaAloD0MIlx5N9eSUY0CUhpRSlGgVTegDaBZHQIExU74i5d51fZQoaAZoCWgPQwh9lufB3T5YQJSGlFKUaBVN6ANoFkdAgUaGGVRk3HV9lChoBmgJaA9DCDARb51/+15AlIaUUpRoFU3oA2gWR0CBXIsIVuaXdX2UKGgGaAloD0MIIhyz7Em+WkCUhpRSlGgVTegDaBZHQIGZpiXpnpV1fZQoaAZoCWgPQwjMCkW6n85hQJSGlFKUaBVN6ANoFkdAgZ7HdO6/ZnV9lChoBmgJaA9DCOuoaoKoNGJAlIaUUpRoFU3oA2gWR0CBroGKyfL+dX2UKGgGaAloD0MIWkdVE8TOYECUhpRSlGgVTegDaBZHQIG1Lrs0HhV1fZQoaAZoCWgPQwh/h6JAn99WQJSGlFKUaBVN6ANoFkdAgbfCHymQ83V9lChoBmgJaA9DCJ+tg4M9A2BAlIaUUpRoFU3oA2gWR0CBuA8s+V1PdX2UKGgGaAloD0MIEVMiiV5bX0CUhpRSlGgVTegDaBZHQIG6FBnjABV1fZQoaAZoCWgPQwhGlsyxvMJZQJSGlFKUaBVN6ANoFkdAgbxFEiMYM3V9lChoBmgJaA9DCAyyZfm6FGJAlIaUUpRoFU3oA2gWR0CBvTKJVKf4dX2UKGgGaAloD0MI+FCiJY/qXECUhpRSlGgVTegDaBZHQIG/Cnm7rcF1fZQoaAZoCWgPQwhmoZ3TrLBpQJSGlFKUaBVNSgJoFkdAgcInxJ/XoXV9lChoBmgJaA9DCBhbCHJQW19AlIaUUpRoFU3oA2gWR0CBxXdPci4bdX2UKGgGaAloD0MILuI7MesVHUCUhpRSlGgVTSEBaBZHQIHF3ljmSyN1fZQoaAZoCWgPQwhVLlT+NWhgQJSGlFKUaBVN6ANoFkdAgdfmVAzHj3V9lChoBmgJaA9DCOHOhZFelk3AlIaUUpRoFU0zAWgWR0CB2Q8V58jSdX2UKGgGaAloD0MIOwDirl4BNcCUhpRSlGgVTUMBaBZHQIHbMwpON5t1fZQoaAZoCWgPQwhcxk0NNL9lQJSGlFKUaBVN5QFoFkdAgfnSNXHR1HV9lChoBmgJaA9DCMjNcAM+ulxAlIaUUpRoFU3oA2gWR0CB/UK64Ds/dX2UKGgGaAloD0MIeeV620x3XECUhpRSlGgVTegDaBZHQIIPBBE8aGZ1fZQoaAZoCWgPQwigGcQHduhQQJSGlFKUaBVN6ANoFkdAgiTwumJm/XV9lChoBmgJaA9DCNAPI4RHEWJAlIaUUpRoFU3oA2gWR0CCKWKdhAnldX2UKGgGaAloD0MI7fFCOjymVUCUhpRSlGgVTegDaBZHQIJ06H0se4l1fZQoaAZoCWgPQwgTueAM/i1gQJSGlFKUaBVN6ANoFkdAgnwtuUD+znV9lChoBmgJaA9DCAjovpzZfkLAlIaUUpRoFUvJaBZHQIJ9/P/rB0p1fZQoaAZoCWgPQwha1v1jIXlUQJSGlFKUaBVN6ANoFkdAgoF0FSsKcHV9lChoBmgJaA9DCJj4o6gzbldAlIaUUpRoFU3oA2gWR0CChUD7IkqudX2UKGgGaAloD0MIB13CobdEXkCUhpRSlGgVTegDaBZHQIKHtlf7aZh1fZQoaAZoCWgPQwggzy7festgQJSGlFKUaBVN6ANoFkdAgovcGkep43V9lChoBmgJaA9DCCBFnbmHqFNAlIaUUpRoFU3oA2gWR0CCkAZw4sErdX2UKGgGaAloD0MIjDBFuTQuWECUhpRSlGgVTegDaBZHQIKQi4x1xKh1fZQoaAZoCWgPQwjnqKPjagxMQJSGlFKUaBVNEgFoFkdAgqBhSUC7snV9lChoBmgJaA9DCJEMObae5lxAlIaUUpRoFU3oA2gWR0CCpWtDD0lJdX2UKGgGaAloD0MIfgIoRpZMYUCUhpRSlGgVTegDaBZHQIKml1bJOnF1fZQoaAZoCWgPQwg9tmXAWf9hQJSGlFKUaBVN6ANoFkdAgqiVoHs1K3V9lChoBmgJaA9DCLqilBCsigfAlIaUUpRoFU0TAWgWR0CCssX/HYHxdX2UKGgGaAloD0MIMbd7uU8kZECUhpRSlGgVTegDaBZHQILDyKWLP2R1fZQoaAZoCWgPQwiWe4FZoXNUQJSGlFKUaBVN6ANoFkdAgsbODSPU8XV9lChoBmgJaA9DCOz6BbthUGJAlIaUUpRoFU3oA2gWR0CC2yDAaef7dX2UKGgGaAloD0MIswsG11zeYECUhpRSlGgVTegDaBZHQILw2kpI+W51fZQoaAZoCWgPQwgzFk1nJ3BTQJSGlFKUaBVN6ANoFkdAgz5Htv4ub3V9lChoBmgJaA9DCLA8SE+R42JAlIaUUpRoFU3oA2gWR0CDRyXyAhB7dX2UKGgGaAloD0MIbVSnA1leVECUhpRSlGgVTegDaBZHQINKj9jwx351fZQoaAZoCWgPQwhUc7nBULpZQJSGlFKUaBVN6ANoFkdAg05U5U96knV9lChoBmgJaA9DCJbQXRJnUGNAlIaUUpRoFU3oA2gWR0CDUNzWf9P2dX2UKGgGaAloD0MIh4cwfprFY0CUhpRSlGgVTegDaBZHQINVJfx+a0B1fZQoaAZoCWgPQwgzh6QWSlVmQJSGlFKUaBVN6ANoFkdAg1o6mGdqcnV9lChoBmgJaA9DCL9DUaDPL2FAlIaUUpRoFU3oA2gWR0CDa10lJHy3dX2UKGgGaAloD0MIZ/FiYYj8SMCUhpRSlGgVTScBaBZHQINveeDnNgV1fZQoaAZoCWgPQwixFwrYjlJiQJSGlFKUaBVN6ANoFkdAg3BnbZezEHV9lChoBmgJaA9DCI6xE16CnlxAlIaUUpRoFU3oA2gWR0CDcX1Iy0rtdX2UKGgGaAloD0MIB5s6jwpkYkCUhpRSlGgVTegDaBZHQINzY+UyHmB1fZQoaAZoCWgPQwi0k8FR8gItwJSGlFKUaBVNTQFoFkdAg3XzCUHIIXV9lChoBmgJaA9DCOIgIcqXuWNAlIaUUpRoFU3oA2gWR0CDfEsq8UVSdX2UKGgGaAloD0MIB7e1heeuZECUhpRSlGgVTegDaBZHQIOLr9hqj8F1fZQoaAZoCWgPQwhywK4mT75jQJSGlFKUaBVN6ANoFkdAg46B24d6s3V9lChoBmgJaA9DCJo/prXppGJAlIaUUpRoFU3oA2gWR0CDnfT6SDAadX2UKGgGaAloD0MItDnObUKQYkCUhpRSlGgVTegDaBZHQIO1RB1LamJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGYvaG9tZS9yb2JlcnQxMDAzLy5weWVudi92ZXJzaW9ucy9kZWVwLXJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e938ec7d3b83c66293db0affa042eff1fbbfcef3d41ecfd11815146ef8ed3ef4
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e17f0dd707622a2eb2ab772b6809194ad09847a68f839ebc1ebdeed2023c5a9
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.29 #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022
|
2 |
+
Python: 3.8.11
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61f05c712353c24e9b10efc5746ff610d218b16f68aa50b94aef1440c0a94526
|
3 |
+
size 239978
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 175.84080723371187, "std_reward": 84.47771586805219, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T15:56:13.417174"}
|