roberta-sgariglia
commited on
Commit
·
b133ec3
1
Parent(s):
abff8b0
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 230.59 +/- 38.03
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc18325320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc183253b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc18325440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc183254d0>", "_build": "<function ActorCriticPolicy._build at 0x7fcc18325560>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc183255f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc18325680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc18325710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc183257a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc18325830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc183258c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc18378270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659713094.2454674, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACawrD2PPiy6XjfaupW/TLZuSok6taz7OQAAgD8AAIA/GpVHveEaiTk7/zg6wDKjtEdMuDvK7125AACAPwAAgD+NUIo+VB6RvLB7Gbs2wTM5/N/3vUIVODoAAIA/AACAP3paMz72JAa8JOqqvIJGHjwEs3S9ShuBuwAAgD8AAIA/DUaIvVxDPrrMXZw7vzlROPokWLvWEVS6AACAPwAAgD9aWhC+XLljOwooLzviNmi4MtoLvWLHVroAAIA/AACAPyh1mL72Dn4767y6OxQU67gOHcW88hBZtQAAgD8AAIA/iqiQPrQnZ70QeHI8Mcsau4Oyxr7G69y7AACAPwAAgD8a3Zo9e6juurVvpjy0dOE7jfSFu1+8wzwAAIA/AACAPzONTz2PDm66qrAKvKZm/7VGz6M6QAhkNQAAgD8AAIA/DVFxPgk8Jz2+/4S61ZQCuQjPwD7A1t63AACAPwAAgD9m0Ts9O5haP6QWzL3GhOW+m8eaPky2QLsAAAAAAAAAAEA9lj1ckwa6+qHmuhQuI7bkWq+6W9gFOgAAgD8AAIA/DSrNvY8Kabo+BT27W8h9tkhELTs9MOk1AACAPwAAgD/mHT2+g40/vEOMorw/V7m6nz2rPZKPljsAAIA/AACAPyana77XZyU6LwbKtgoKQrK81i68i3XtNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwR2oUx5aX0CUhpRSlIwBbJRN6AOMAXSUR0B6u7RKHwgDdX2UKGgGaAloD0MISkG3lzThYUCUhpRSlGgVTegDaBZHQHrLaEvkBCF1fZQoaAZoCWgPQwiWdmouNyRFQJSGlFKUaBVLqmgWR0B66Io2GZeBdX2UKGgGaAloD0MIUl+WdmpxZECUhpRSlGgVTegDaBZHQHrxL1Iy0rt1fZQoaAZoCWgPQwjY8V8gCP5LQJSGlFKUaBVN6ANoFkdAevkSGahHsnV9lChoBmgJaA9DCAJIbeLklV1AlIaUUpRoFU3oA2gWR0B6+SGVRk3CdX2UKGgGaAloD0MIgXfy6bHgV0CUhpRSlGgVTegDaBZHQHr6K0IC2c91fZQoaAZoCWgPQwiIEcKjjf9gQJSGlFKUaBVN6ANoFkdAew7/4qPOp3V9lChoBmgJaA9DCNnNjH400DJAlIaUUpRoFUusaBZHQHsX3H/95yF1fZQoaAZoCWgPQwg5DVGFP+1ZQJSGlFKUaBVN6ANoFkdAexfo1UEPlXV9lChoBmgJaA9DCMZrXtVZNlhAlIaUUpRoFU3oA2gWR0B7MBNXYDkmdX2UKGgGaAloD0MIm1Wfq60yRkCUhpRSlGgVS5xoFkdAezCEhaC+UXV9lChoBmgJaA9DCPsHkQw5MklAlIaUUpRoFU3oA2gWR0B7Mx5a/yoXdX2UKGgGaAloD0MI2gOtwJDZX0CUhpRSlGgVTegDaBZHQHs1Tkhib2F1fZQoaAZoCWgPQwgT7pV5q1I+QJSGlFKUaBVLsWgWR0B7PJQdjoZAdX2UKGgGaAloD0MIfjUHCOaJZECUhpRSlGgVTegDaBZHQHtZjCUHIIZ1fZQoaAZoCWgPQwg7/aAuUjAlQJSGlFKUaBVLomgWR0B7XxfKISDidX2UKGgGaAloD0MIr+lBQSmuWUCUhpRSlGgVTegDaBZHQHtluvt+kQB1fZQoaAZoCWgPQwiaX80BgolcQJSGlFKUaBVN6ANoFkdAe2oXbM5fdHV9lChoBmgJaA9DCP8kPneCTTNAlIaUUpRoFUu9aBZHQHuDjs+mm+F1fZQoaAZoCWgPQwjHm/wWHbZlQJSGlFKUaBVN6ANoFkdAe+lRh+fAbnV9lChoBmgJaA9DCAGJJlBEoGRAlIaUUpRoFU3oA2gWR0B76laNdZ7pdX2UKGgGaAloD0MIBthHp66uTcCUhpRSlGgVS6NoFkdAe/Xsq8UVSHV9lChoBmgJaA9DCBrerMH7yGNAlIaUUpRoFU3oA2gWR0B7+rsZ5zHTdX2UKGgGaAloD0MIvALRkzIhJUCUhpRSlGgVS7VoFkdAfBRGYKIBR3V9lChoBmgJaA9DCHsS2JyDlFtAlIaUUpRoFU3oA2gWR0B8FJeeFtbcdX2UKGgGaAloD0MIkBK7trdTZUCUhpRSlGgVTegDaBZHQHwjKEOAiFF1fZQoaAZoCWgPQwhrRDAOLgVLQJSGlFKUaBVN6ANoFkdAfCM642CNCXV9lChoBmgJaA9DCFSM8zeh2llAlIaUUpRoFU3oA2gWR0B8JC5mRNh3dX2UKGgGaAloD0MIfa1LjdALW0CUhpRSlGgVTegDaBZHQHxDdg0CRwJ1fZQoaAZoCWgPQwjDf7qBAldowJSGlFKUaBVLmmgWR0B8Rz7YTTOPdX2UKGgGaAloD0MIesN95Fb4ZkCUhpRSlGgVTegDaBZHQHxer2QGOdZ1fZQoaAZoCWgPQwjptdlYiU5iQJSGlFKUaBVN6ANoFkdAfF877bcoIHV9lChoBmgJaA9DCJvkR/yKu2FAlIaUUpRoFU3oA2gWR0B8YgKv3ai9dX2UKGgGaAloD0MIwcdgxanOXECUhpRSlGgVTegDaBZHQHxkYvexfOV1fZQoaAZoCWgPQwiWWYRiK9ZJQJSGlFKUaBVLm2gWR0B8Z9nrY5DJdX2UKGgGaAloD0MIKh+CqlGzY0CUhpRSlGgVTegDaBZHQHyTzLwF1Sx1fZQoaAZoCWgPQwjufD813ntgQJSGlFKUaBVN6ANoFkdAfJuaW5YozHV9lChoBmgJaA9DCEcBomDGI1pAlIaUUpRoFU3oA2gWR0B8oJJZntfHdX2UKGgGaAloD0MIBKp/EMnSSkCUhpRSlGgVS59oFkdAfMNfD1oQF3V9lChoBmgJaA9DCKGd0yxQJmBAlIaUUpRoFU3oA2gWR0B9JtyBClabdX2UKGgGaAloD0MIS1mGONbrS0CUhpRSlGgVTegDaBZHQH00du+AVfx1fZQoaAZoCWgPQwi30JUIVBdgQJSGlFKUaBVN6ANoFkdAfTnpDeCTU3V9lChoBmgJaA9DCBoUzQNYEDPAlIaUUpRoFUvEaBZHQH1DwSzw+dN1fZQoaAZoCWgPQwiOO6WDdb5kQJSGlFKUaBVN6ANoFkdAfVb9C/oJRnV9lChoBmgJaA9DCEErMGR1h01AlIaUUpRoFU3oA2gWR0B9V1h2GIsRdX2UKGgGaAloD0MI5bM8D+4aZkCUhpRSlGgVTegDaBZHQH1mic5Ke051fZQoaAZoCWgPQwjx2To42FpjQJSGlFKUaBVN6ANoFkdAfWadCE6DG3V9lChoBmgJaA9DCC+i7Zi6qwFAlIaUUpRoFUu9aBZHQH2ElPJq7Ad1fZQoaAZoCWgPQwgArfnxlwRhQJSGlFKUaBVN6ANoFkdAfYxRWcSXdHV9lChoBmgJaA9DCEMCRpc3WGBAlIaUUpRoFU3oA2gWR0B9pT63y7PIdX2UKGgGaAloD0MIVMVU+gmTU0CUhpRSlGgVTegDaBZHQH2lyeI2wV11fZQoaAZoCWgPQwiphZLJqXxdQJSGlFKUaBVN6ANoFkdAfaihHskY43V9lChoBmgJaA9DCDqQ9dTqGVhAlIaUUpRoFU3oA2gWR0B9qwAXEZR9dX2UKGgGaAloD0MIjiCVYkeBZECUhpRSlGgVTegDaBZHQH2ukwvg3tN1fZQoaAZoCWgPQwiPpQ9dUMcuQJSGlFKUaBVLq2gWR0B9tMq+ajN7dX2UKGgGaAloD0MIHOxNDMm5GkCUhpRSlGgVS8FoFkdAfc4XRgJC0HV9lChoBmgJaA9DCJPi4xOyoUZAlIaUUpRoFUuiaBZHQH3QJwGW2PV1fZQoaAZoCWgPQwgBwRw9/hRgQJSGlFKUaBVN6ANoFkdAfdUzbvgFYHV9lChoBmgJaA9DCFuwVBfw6iFAlIaUUpRoFUuiaBZHQH3XXRPXTVl1fZQoaAZoCWgPQwj92vrpP+BfQJSGlFKUaBVN6ANoFkdAfeAHxz7uUnV9lChoBmgJaA9DCPcA3Zczr1VAlIaUUpRoFUvQaBZHQH4Sff0mMOx1fZQoaAZoCWgPQwiYGMv0S6VWQJSGlFKUaBVN6ANoFkdAfmJmzSkTH3V9lChoBmgJaA9DCE9bI4LxpWFAlIaUUpRoFU3oA2gWR0B+b1M23rledX2UKGgGaAloD0MIp+Zyg6FSSkCUhpRSlGgVTegDaBZHQH50jFZPl+51fZQoaAZoCWgPQwjqBZ/m5IVcQJSGlFKUaBVN6ANoFkdAfn35rP+n63V9lChoBmgJaA9DCLUy4Zf6RVBAlIaUUpRoFUuTaBZHQH6IWQCCBf91fZQoaAZoCWgPQwjLhjWVRQZZQJSGlFKUaBVN6ANoFkdAfo/VeKKpDXV9lChoBmgJaA9DCAJjfQMTOWBAlIaUUpRoFU3oA2gWR0B+nuh11W8zdX2UKGgGaAloD0MIjpQtknaxZ0CUhpRSlGgVTegDaBZHQH6e+so2GZh1fZQoaAZoCWgPQwhPAptz8LwVQJSGlFKUaBVLb2gWR0B+qZ96Tnq3dX2UKGgGaAloD0MImzxlNV0LTkCUhpRSlGgVTegDaBZHQH68rZWaMJh1fZQoaAZoCWgPQwhoeR7cneU1QJSGlFKUaBVLumgWR0B+2AgFHJ9zdX2UKGgGaAloD0MIONibGJLfWUCUhpRSlGgVTegDaBZHQH7dSq+8Gs51fZQoaAZoCWgPQwgiHLPsSfdcQJSGlFKUaBVN6ANoFkdAfuEiZv1lG3V9lChoBmgJaA9DCGcN3lfltV1AlIaUUpRoFU3oA2gWR0B+48aqCHymdX2UKGgGaAloD0MI5IbfTbdEIsCUhpRSlGgVS69oFkdAfui7ulXRxHV9lChoBmgJaA9DCAaeew8XrGFAlIaUUpRoFU3oA2gWR0B/C73rUsnRdX2UKGgGaAloD0MIT7FqEGbYYECUhpRSlGgVTegDaBZHQH8OA3o9s8B1fZQoaAZoCWgPQwhqiZXRyE5gQJSGlFKUaBVN6ANoFkdAfxMrftQbdnV9lChoBmgJaA9DCJ5eKcsQY1pAlIaUUpRoFU3oA2gWR0B/FWcoYvWZdX2UKGgGaAloD0MIlnmrrkP9XkCUhpRSlGgVTegDaBZHQH9SpxJd0JZ1fZQoaAZoCWgPQwimft5UpL5VQJSGlFKUaBVN6ANoFkdAf7GAtnPE9HV9lChoBmgJaA9DCDfeHRkr3mJAlIaUUpRoFU3oA2gWR0B/tySOinHedX2UKGgGaAloD0MIqkNuhpuoYkCUhpRSlGgVTegDaBZHQH/Atph4MWp1fZQoaAZoCWgPQwhsPUM4ZoFgQJSGlFKUaBVN6ANoFkdAf8vUyHmA9XV9lChoBmgJaA9DCCvfMxKhIFtAlIaUUpRoFU3oA2gWR0B/40RL9MsZdX2UKGgGaAloD0MIafzCK0nOYECUhpRSlGgVTegDaBZHQH/jW0VrRBx1fZQoaAZoCWgPQwjh0jHnGW1KQJSGlFKUaBVLsmgWR0B/7XleWv8qdX2UKGgGaAloD0MIqwfMQybkYUCUhpRSlGgVTegDaBZHQIAQ3RPXTVl1fZQoaAZoCWgPQwjTTs3lBr1fQJSGlFKUaBVN6ANoFkdAgBPTdUKiPHV9lChoBmgJaA9DCPYHym37UVpAlIaUUpRoFU3oA2gWR0CAFfG+9Jz1dX2UKGgGaAloD0MIGxNiLqksXECUhpRSlGgVTegDaBZHQIAXZUipvP11fZQoaAZoCWgPQwgHQUerWqhgQJSGlFKUaBVN6ANoFkdAgBoLbg0j1XV9lChoBmgJaA9DCPpCyHn/GFlAlIaUUpRoFU3oA2gWR0CAKlBtUGVzdX2UKGgGaAloD0MIbAa4IFupWkCUhpRSlGgVTegDaBZHQIArVSOzY291fZQoaAZoCWgPQwgSoKaWrb9aQJSGlFKUaBVN6ANoFkdAgC3KREF4cHV9lChoBmgJaA9DCAiPNo5YB0RAlIaUUpRoFUu6aBZHQIAuqQ3gk1N1fZQoaAZoCWgPQwg3picscX1hQJSGlFKUaBVN6ANoFkdAgC7kZaV2R3V9lChoBmgJaA9DCM+6RsuBuWFAlIaUUpRoFU3oA2gWR0CAS+KiwjdIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d4d1326980e01e27120960c8f8ea50eccea2bbacd3f5c7fec06d45721c5d198
|
3 |
+
size 147120
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc18325320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc183253b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc18325440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc183254d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcc18325560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcc183255f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc18325680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc18325710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc183257a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc18325830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc183258c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcc18378270>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1659713094.2454674,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACawrD2PPiy6XjfaupW/TLZuSok6taz7OQAAgD8AAIA/GpVHveEaiTk7/zg6wDKjtEdMuDvK7125AACAPwAAgD+NUIo+VB6RvLB7Gbs2wTM5/N/3vUIVODoAAIA/AACAP3paMz72JAa8JOqqvIJGHjwEs3S9ShuBuwAAgD8AAIA/DUaIvVxDPrrMXZw7vzlROPokWLvWEVS6AACAPwAAgD9aWhC+XLljOwooLzviNmi4MtoLvWLHVroAAIA/AACAPyh1mL72Dn4767y6OxQU67gOHcW88hBZtQAAgD8AAIA/iqiQPrQnZ70QeHI8Mcsau4Oyxr7G69y7AACAPwAAgD8a3Zo9e6juurVvpjy0dOE7jfSFu1+8wzwAAIA/AACAPzONTz2PDm66qrAKvKZm/7VGz6M6QAhkNQAAgD8AAIA/DVFxPgk8Jz2+/4S61ZQCuQjPwD7A1t63AACAPwAAgD9m0Ts9O5haP6QWzL3GhOW+m8eaPky2QLsAAAAAAAAAAEA9lj1ckwa6+qHmuhQuI7bkWq+6W9gFOgAAgD8AAIA/DSrNvY8Kabo+BT27W8h9tkhELTs9MOk1AACAPwAAgD/mHT2+g40/vEOMorw/V7m6nz2rPZKPljsAAIA/AACAPyana77XZyU6LwbKtgoKQrK81i68i3XtNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwR2oUx5aX0CUhpRSlIwBbJRN6AOMAXSUR0B6u7RKHwgDdX2UKGgGaAloD0MISkG3lzThYUCUhpRSlGgVTegDaBZHQHrLaEvkBCF1fZQoaAZoCWgPQwiWdmouNyRFQJSGlFKUaBVLqmgWR0B66Io2GZeBdX2UKGgGaAloD0MIUl+WdmpxZECUhpRSlGgVTegDaBZHQHrxL1Iy0rt1fZQoaAZoCWgPQwjY8V8gCP5LQJSGlFKUaBVN6ANoFkdAevkSGahHsnV9lChoBmgJaA9DCAJIbeLklV1AlIaUUpRoFU3oA2gWR0B6+SGVRk3CdX2UKGgGaAloD0MIgXfy6bHgV0CUhpRSlGgVTegDaBZHQHr6K0IC2c91fZQoaAZoCWgPQwiIEcKjjf9gQJSGlFKUaBVN6ANoFkdAew7/4qPOp3V9lChoBmgJaA9DCNnNjH400DJAlIaUUpRoFUusaBZHQHsX3H/95yF1fZQoaAZoCWgPQwg5DVGFP+1ZQJSGlFKUaBVN6ANoFkdAexfo1UEPlXV9lChoBmgJaA9DCMZrXtVZNlhAlIaUUpRoFU3oA2gWR0B7MBNXYDkmdX2UKGgGaAloD0MIm1Wfq60yRkCUhpRSlGgVS5xoFkdAezCEhaC+UXV9lChoBmgJaA9DCPsHkQw5MklAlIaUUpRoFU3oA2gWR0B7Mx5a/yoXdX2UKGgGaAloD0MI2gOtwJDZX0CUhpRSlGgVTegDaBZHQHs1Tkhib2F1fZQoaAZoCWgPQwgT7pV5q1I+QJSGlFKUaBVLsWgWR0B7PJQdjoZAdX2UKGgGaAloD0MIfjUHCOaJZECUhpRSlGgVTegDaBZHQHtZjCUHIIZ1fZQoaAZoCWgPQwg7/aAuUjAlQJSGlFKUaBVLomgWR0B7XxfKISDidX2UKGgGaAloD0MIr+lBQSmuWUCUhpRSlGgVTegDaBZHQHtluvt+kQB1fZQoaAZoCWgPQwiaX80BgolcQJSGlFKUaBVN6ANoFkdAe2oXbM5fdHV9lChoBmgJaA9DCP8kPneCTTNAlIaUUpRoFUu9aBZHQHuDjs+mm+F1fZQoaAZoCWgPQwjHm/wWHbZlQJSGlFKUaBVN6ANoFkdAe+lRh+fAbnV9lChoBmgJaA9DCAGJJlBEoGRAlIaUUpRoFU3oA2gWR0B76laNdZ7pdX2UKGgGaAloD0MIBthHp66uTcCUhpRSlGgVS6NoFkdAe/Xsq8UVSHV9lChoBmgJaA9DCBrerMH7yGNAlIaUUpRoFU3oA2gWR0B7+rsZ5zHTdX2UKGgGaAloD0MIvALRkzIhJUCUhpRSlGgVS7VoFkdAfBRGYKIBR3V9lChoBmgJaA9DCHsS2JyDlFtAlIaUUpRoFU3oA2gWR0B8FJeeFtbcdX2UKGgGaAloD0MIkBK7trdTZUCUhpRSlGgVTegDaBZHQHwjKEOAiFF1fZQoaAZoCWgPQwhrRDAOLgVLQJSGlFKUaBVN6ANoFkdAfCM642CNCXV9lChoBmgJaA9DCFSM8zeh2llAlIaUUpRoFU3oA2gWR0B8JC5mRNh3dX2UKGgGaAloD0MIfa1LjdALW0CUhpRSlGgVTegDaBZHQHxDdg0CRwJ1fZQoaAZoCWgPQwjDf7qBAldowJSGlFKUaBVLmmgWR0B8Rz7YTTOPdX2UKGgGaAloD0MIesN95Fb4ZkCUhpRSlGgVTegDaBZHQHxer2QGOdZ1fZQoaAZoCWgPQwjptdlYiU5iQJSGlFKUaBVN6ANoFkdAfF877bcoIHV9lChoBmgJaA9DCJvkR/yKu2FAlIaUUpRoFU3oA2gWR0B8YgKv3ai9dX2UKGgGaAloD0MIwcdgxanOXECUhpRSlGgVTegDaBZHQHxkYvexfOV1fZQoaAZoCWgPQwiWWYRiK9ZJQJSGlFKUaBVLm2gWR0B8Z9nrY5DJdX2UKGgGaAloD0MIKh+CqlGzY0CUhpRSlGgVTegDaBZHQHyTzLwF1Sx1fZQoaAZoCWgPQwjufD813ntgQJSGlFKUaBVN6ANoFkdAfJuaW5YozHV9lChoBmgJaA9DCEcBomDGI1pAlIaUUpRoFU3oA2gWR0B8oJJZntfHdX2UKGgGaAloD0MIBKp/EMnSSkCUhpRSlGgVS59oFkdAfMNfD1oQF3V9lChoBmgJaA9DCKGd0yxQJmBAlIaUUpRoFU3oA2gWR0B9JtyBClabdX2UKGgGaAloD0MIS1mGONbrS0CUhpRSlGgVTegDaBZHQH00du+AVfx1fZQoaAZoCWgPQwi30JUIVBdgQJSGlFKUaBVN6ANoFkdAfTnpDeCTU3V9lChoBmgJaA9DCBoUzQNYEDPAlIaUUpRoFUvEaBZHQH1DwSzw+dN1fZQoaAZoCWgPQwiOO6WDdb5kQJSGlFKUaBVN6ANoFkdAfVb9C/oJRnV9lChoBmgJaA9DCEErMGR1h01AlIaUUpRoFU3oA2gWR0B9V1h2GIsRdX2UKGgGaAloD0MI5bM8D+4aZkCUhpRSlGgVTegDaBZHQH1mic5Ke051fZQoaAZoCWgPQwjx2To42FpjQJSGlFKUaBVN6ANoFkdAfWadCE6DG3V9lChoBmgJaA9DCC+i7Zi6qwFAlIaUUpRoFUu9aBZHQH2ElPJq7Ad1fZQoaAZoCWgPQwgArfnxlwRhQJSGlFKUaBVN6ANoFkdAfYxRWcSXdHV9lChoBmgJaA9DCEMCRpc3WGBAlIaUUpRoFU3oA2gWR0B9pT63y7PIdX2UKGgGaAloD0MIVMVU+gmTU0CUhpRSlGgVTegDaBZHQH2lyeI2wV11fZQoaAZoCWgPQwiphZLJqXxdQJSGlFKUaBVN6ANoFkdAfaihHskY43V9lChoBmgJaA9DCDqQ9dTqGVhAlIaUUpRoFU3oA2gWR0B9qwAXEZR9dX2UKGgGaAloD0MIjiCVYkeBZECUhpRSlGgVTegDaBZHQH2ukwvg3tN1fZQoaAZoCWgPQwiPpQ9dUMcuQJSGlFKUaBVLq2gWR0B9tMq+ajN7dX2UKGgGaAloD0MIHOxNDMm5GkCUhpRSlGgVS8FoFkdAfc4XRgJC0HV9lChoBmgJaA9DCJPi4xOyoUZAlIaUUpRoFUuiaBZHQH3QJwGW2PV1fZQoaAZoCWgPQwgBwRw9/hRgQJSGlFKUaBVN6ANoFkdAfdUzbvgFYHV9lChoBmgJaA9DCFuwVBfw6iFAlIaUUpRoFUuiaBZHQH3XXRPXTVl1fZQoaAZoCWgPQwj92vrpP+BfQJSGlFKUaBVN6ANoFkdAfeAHxz7uUnV9lChoBmgJaA9DCPcA3Zczr1VAlIaUUpRoFUvQaBZHQH4Sff0mMOx1fZQoaAZoCWgPQwiYGMv0S6VWQJSGlFKUaBVN6ANoFkdAfmJmzSkTH3V9lChoBmgJaA9DCE9bI4LxpWFAlIaUUpRoFU3oA2gWR0B+b1M23rledX2UKGgGaAloD0MIp+Zyg6FSSkCUhpRSlGgVTegDaBZHQH50jFZPl+51fZQoaAZoCWgPQwjqBZ/m5IVcQJSGlFKUaBVN6ANoFkdAfn35rP+n63V9lChoBmgJaA9DCLUy4Zf6RVBAlIaUUpRoFUuTaBZHQH6IWQCCBf91fZQoaAZoCWgPQwjLhjWVRQZZQJSGlFKUaBVN6ANoFkdAfo/VeKKpDXV9lChoBmgJaA9DCAJjfQMTOWBAlIaUUpRoFU3oA2gWR0B+nuh11W8zdX2UKGgGaAloD0MIjpQtknaxZ0CUhpRSlGgVTegDaBZHQH6e+so2GZh1fZQoaAZoCWgPQwhPAptz8LwVQJSGlFKUaBVLb2gWR0B+qZ96Tnq3dX2UKGgGaAloD0MImzxlNV0LTkCUhpRSlGgVTegDaBZHQH68rZWaMJh1fZQoaAZoCWgPQwhoeR7cneU1QJSGlFKUaBVLumgWR0B+2AgFHJ9zdX2UKGgGaAloD0MIONibGJLfWUCUhpRSlGgVTegDaBZHQH7dSq+8Gs51fZQoaAZoCWgPQwgiHLPsSfdcQJSGlFKUaBVN6ANoFkdAfuEiZv1lG3V9lChoBmgJaA9DCGcN3lfltV1AlIaUUpRoFU3oA2gWR0B+48aqCHymdX2UKGgGaAloD0MI5IbfTbdEIsCUhpRSlGgVS69oFkdAfui7ulXRxHV9lChoBmgJaA9DCAaeew8XrGFAlIaUUpRoFU3oA2gWR0B/C73rUsnRdX2UKGgGaAloD0MIT7FqEGbYYECUhpRSlGgVTegDaBZHQH8OA3o9s8B1fZQoaAZoCWgPQwhqiZXRyE5gQJSGlFKUaBVN6ANoFkdAfxMrftQbdnV9lChoBmgJaA9DCJ5eKcsQY1pAlIaUUpRoFU3oA2gWR0B/FWcoYvWZdX2UKGgGaAloD0MIlnmrrkP9XkCUhpRSlGgVTegDaBZHQH9SpxJd0JZ1fZQoaAZoCWgPQwimft5UpL5VQJSGlFKUaBVN6ANoFkdAf7GAtnPE9HV9lChoBmgJaA9DCDfeHRkr3mJAlIaUUpRoFU3oA2gWR0B/tySOinHedX2UKGgGaAloD0MIqkNuhpuoYkCUhpRSlGgVTegDaBZHQH/Atph4MWp1fZQoaAZoCWgPQwhsPUM4ZoFgQJSGlFKUaBVN6ANoFkdAf8vUyHmA9XV9lChoBmgJaA9DCCvfMxKhIFtAlIaUUpRoFU3oA2gWR0B/40RL9MsZdX2UKGgGaAloD0MIafzCK0nOYECUhpRSlGgVTegDaBZHQH/jW0VrRBx1fZQoaAZoCWgPQwjh0jHnGW1KQJSGlFKUaBVLsmgWR0B/7XleWv8qdX2UKGgGaAloD0MIqwfMQybkYUCUhpRSlGgVTegDaBZHQIAQ3RPXTVl1fZQoaAZoCWgPQwjTTs3lBr1fQJSGlFKUaBVN6ANoFkdAgBPTdUKiPHV9lChoBmgJaA9DCPYHym37UVpAlIaUUpRoFU3oA2gWR0CAFfG+9Jz1dX2UKGgGaAloD0MIGxNiLqksXECUhpRSlGgVTegDaBZHQIAXZUipvP11fZQoaAZoCWgPQwgHQUerWqhgQJSGlFKUaBVN6ANoFkdAgBoLbg0j1XV9lChoBmgJaA9DCPpCyHn/GFlAlIaUUpRoFU3oA2gWR0CAKlBtUGVzdX2UKGgGaAloD0MIbAa4IFupWkCUhpRSlGgVTegDaBZHQIArVSOzY291fZQoaAZoCWgPQwgSoKaWrb9aQJSGlFKUaBVN6ANoFkdAgC3KREF4cHV9lChoBmgJaA9DCAiPNo5YB0RAlIaUUpRoFUu6aBZHQIAuqQ3gk1N1fZQoaAZoCWgPQwg3picscX1hQJSGlFKUaBVN6ANoFkdAgC7kZaV2R3V9lChoBmgJaA9DCM+6RsuBuWFAlIaUUpRoFU3oA2gWR0CAS+KiwjdIdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75debec2746421ab19237e4819563f5659b35159a4164486815ee9596c9712d2
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e60f771b2f080df19a5b45d264b982ece42313e54dabe5abf7fd573b08fa28af
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (149 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 230.59169807093403, "std_reward": 38.028054646760076, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-05T16:03:45.202985"}
|