robingeibel commited on
Commit
6cbdfe8
·
1 Parent(s): 2ce67f1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -13
README.md CHANGED
@@ -15,11 +15,6 @@ should probably proofread and complete it, then remove this comment. -->
15
  # led-base-16384-finetuned-big_patent
16
 
17
  This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the big_patent dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 2.5094
20
- - Rouge2 Precision: 0.128
21
- - Rouge2 Recall: 0.1325
22
- - Rouge2 Fmeasure: 0.125
23
 
24
  ## Model description
25
 
@@ -39,11 +34,11 @@ More information needed
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 5e-05
42
- - train_batch_size: 2
43
- - eval_batch_size: 2
44
  - seed: 42
45
  - gradient_accumulation_steps: 4
46
- - total_train_batch_size: 8
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: linear
49
  - num_epochs: 1
@@ -51,15 +46,11 @@ The following hyperparameters were used during training:
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
55
- |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
56
- | 2.6657 | 0.4 | 500 | 2.6048 | 0.1211 | 0.131 | 0.121 |
57
- | 2.6099 | 0.8 | 1000 | 2.5094 | 0.128 | 0.1325 | 0.125 |
58
 
59
 
60
  ### Framework versions
61
 
62
- - Transformers 4.19.3
63
  - Pytorch 1.11.0+cu113
64
  - Datasets 2.2.2
65
  - Tokenizers 0.12.1
 
15
  # led-base-16384-finetuned-big_patent
16
 
17
  This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the big_patent dataset.
 
 
 
 
 
18
 
19
  ## Model description
20
 
 
34
 
35
  The following hyperparameters were used during training:
36
  - learning_rate: 5e-05
37
+ - train_batch_size: 1
38
+ - eval_batch_size: 1
39
  - seed: 42
40
  - gradient_accumulation_steps: 4
41
+ - total_train_batch_size: 4
42
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
  - lr_scheduler_type: linear
44
  - num_epochs: 1
 
46
 
47
  ### Training results
48
 
 
 
 
 
49
 
50
 
51
  ### Framework versions
52
 
53
+ - Transformers 4.19.4
54
  - Pytorch 1.11.0+cu113
55
  - Datasets 2.2.2
56
  - Tokenizers 0.12.1